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The following is a short guide to multivariable calculus with Maxima. It loosely follows
the treatment of Stewart’s Calculus, Seventh Edition. Refer there for definitions, theorems,
proofs, explanations, and exercises. The simple goal of this guide is to demonstrate how to
use Maxima to solve problems in that vein.

This was originally written for the students in my third semester Calculus class, but once
it grew past twenty pages I thought it might be of interest to a wider audience. Here it is. I
am releasing this as a FREE document, and other people are free to build on this to make
it better. The source for this document is located at

http://people.ysu.edu/~gkerns/maxima/

It was inspired by Maxima by Example by Edwin Woollett, A Maxima Guide for Calculus

Students by Moses Glasner, and Tutorial on Maxima by unknown. I also received help from
the Maxima mailing list archives and volunteer responses to my questions. Thanks to all of
those individuals.
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1 Getting Maxima

There are many ways to get Maxima, and the choices are governed somewhat by the user’s
operating system (although Maxima proper is platform independent). The home page for
Maxima (which has links to download from SourceForge) is

http://maxima.sourceforge.net

This document was written with Emaxima on GNU-Emacs. Emacs is a powerful text
editor, and Emaxima uses Emacs to integrate Maxima input/output with LATEX code to
produce documents that look like they could have come from a textbook. That’s why the
mathematical expressions below are so pretty. See the following link to learn more about
Emaxima.

http://www.emacswiki.org/emacs/MaximaMode

If you do not want to write a paper but just want to work with Maxima interactively
then another option is imaxima, which also works with Emacs and LATEX (and Ghostscript) to
typeset Maxima input/output professionally. To learn more about imaxima see the following.

http://sites.google.com/site/imaximaimath/

Another option that exists is TeXmacs, but I do not have much experience with it. From
what I can gather it has a good reputation.

1.1 How to Install imaxima for Microsoft Windowsr

The following instructions are to set up imaxima on a computer with a Microsoft Windowsr
operating system (the majority of users). If you are running Mac-OS then instead go to

http://sites.google.com/site/imaximaimath/download-and-install/easy-install-on-mac-os-x,

and if you are running Linux (like me) you can go to

http://sites.google.com/site/imaximaimath/download-and-install/easy-install-on-linux.

Please note that these instructions are NOT needed to install plain-old Maxima. It
is already installed in Cushwa 1062, and you can install it at home with the ’Maxima’
instructions in the next subsection.
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1.1.1 Install the software

In order to take advantage of the full power of imaxima you need several things.

MiKTEX 2.7 (pronounced “MICK - teck”) is an up-to-date implementation of TEX and
related programs for Windowsr. Its official web site is www.miktex.org. You can go
to http://www.miktex.org/2.7/Setup.aspx and click the Download button of the
Basic MiKTeX 2.7 Installer on that page. You may save the .exe file anywhere,
such as the Desktop. Start the installation with a double-click. You need to install it
in the default place.

GPL Ghostscript 8.63 The main page for Ghostscript is http://www.cs.wisc.edu/~ghost/.
To download the latest Ghostscript 8.64 compiled for Windowsr, you go to

http://pages.cs.wisc.edu/~ghost/doc/GPL/gpl864.htm.

In the middle of the page there there is a link to the file you need. Choose gs864w32.exe
(or the latest release; if you have a 64-bit system then you will need gs864w64.exe,
and if you do not know what I am talking about then you probably do not need the
64-bit version). You can double click the downloaded gs864w32.exe file to start the
installation. You need to install it in the default place.

Maxima Go to http://sourceforge.net/projects/maxima/files/, and scroll down to
the Maxima-Windows section. Choose maxima-5.19.2.exe (or the latest release) for the
download of a Windowsr pre-compiled binary installer. Double click the downloaded
maxima-5.19.2.exe file to start installation. You need to install it in the default place.

Emacs is a very powerful text editor. The very official precompiled release can be obained
from http://ftp.gnu.org/pub/gnu/emacs/windows/. However, the distributed pre-
compiled binary does NOT support image features, hence it is not good enough for
imaxima, by default. Thanks to Vincent Goulet, however, you can obtain a precom-
piled binary installer which has everything you need to use imaxima. Go to the web
page http://vgoulet.act.ulaval.ca/en/ressources/emacs/windows and choose
emacs-23.1-modified-3.exe for download. Just follow the instructions and install it
in the default place.

1.1.2 Configure your system

Once you have installed all of the above, go to the Start Menu under GNU Emacs and click
Update Site Configuration. In the file that opens add the following single line (and it has to
be exactly right) to the top of the file and click the Save button. Note that there shouldn’t
be any line break; it is one, big, long, line.

(load "C:/ Program Files/Maxima -5.19.2/ share/maxima /5.19.2/ emacs

/setup -imaxima -imath.el")

If you have installed a different version of Maxima then the 5.19.2 appearing twice in
the above line should be replaced with the version you have downloaded.

Then quit Emacs and restart. When it opens, type:
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M-x imaxima

The symbol M means the Alt key (which is also known as the Meta key). Thus, the
command M-x imaxima means

1. Hold down the Alt key and press x.

2. Let go, then type imaxima, then press Enter.

If this is your first time using imaxima, MikTEX will probably ask you to install the mh

package from CTAN. Please proceed with Yes for installation. This may take some time, so
be patient.

Then, you will see the initial screen of Maxima. Enjoy!!

2 Three Dimensional Geometry

2.1 Vectors and Linear Algebra

We set up vectors in a way which is slightly different from how we do it in Maple.

(%i1) a: [1,2,3];

(%o1)

[1, 2, 3]

(%i2) b: [2,-1,4];

(%o2)

[2,−1, 4]

We can do the standard addition and scalar multiplication of vectors.

(%i3) 3 * a;

(%o3)

[3, 6, 9]

(%i4) a + b;

(%o4)

[3, 1, 7]

The dot product operator is a simple period "." between the vectors.

(%i5) a . b;
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(%o5)

12

We can check our answer to make sure it is right.

(%i6) 1 * 2 + 2 * (-1) + 3 * 4;

(%o6)

12

To do cross products we must load a special package, the vect package, which is included
with Maxima.

(%i7) load(vect);

(%o7)

/usr/local/share/maxima/5.19.2/share/vector/vect.mac

The symbol for the cross product is the tilde "~" up on the left corner of the keyboard
(you need to do Shift to get it).

(%i8) a ~ b;

(%o8)

([1, 2, 3] , [2,−1, 4])

(%i9) express(%);

(%o9)

[11, 2,−5]

The cross product did not look like anything at the beginning; we had to express the
cross product to get something recognizable.

The norm (length) of a vector is the square root of the dot product of the vector with
itself.

(%i10) sqrt(a . a);

(%o10)

√
14
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Putting what we have learned all together we may do vector projections and scalar triple
products (we will need another vector c for the STP to make sense).

(%i11) (a . b)/(a . a) * a;

(%o11)

[

6

7
,
12

7
,
18

7

]

(%i12) c: [-5, 2, 9];

(%o12)

[−5, 2, 9]

(%i13) a . (b ~ c);

(%o13)

[1, 2, 3] · ([−2, 1,−4] , [5,−2,−9])

(%i14) express(%);

(%o14)

−96

Again, we needed to express the cross product to get anything useful.

2.2 Lines, Planes, and Quadric Surfaces

We can plot planes with implicitplot from the draw package.
First let us define the plane with equation

3x + 4y + 5z = 0.

We store the equation of the plane in the variable plane1.

(%i1) plane1: 3*x + 4*y + 5*z = 0;

(%o1)

5 z + 4 y + 3 x = 0

(%i2) load(draw);

(%o2)

/usr/local/share/maxima/5.19.2/share/draw/draw.lisp

(%i3) draw3d(enhanced3d = true, implicit(plane1, x,-4,4, y,-4,4, z, -6,6));

(%o3)

[gr3d (implicit)]
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Figure 1: A plot of a plane

Let us next plot an ellipsoid with equation

x2

3
+ y2 + z2 = 3.

We plot it just like we plot the plane.

(%i4) ellips1: x^2/3 + y^2 + z^2 = 3;

(%o4)

z2 + y2 +
x2

3
= 3

(%i5) draw3d(enhanced3d = true, implicit(ellips1, x,-3,3, y,-2,2, z, -2,2));

(%o5)

[gr3d (implicit)]

We can also use Maxima to help us find an equation of a plane based on defining vectors.
For instance, let’s find and plot the plane determined by the points A(1, 1, 1), B(1, 2, 3), and
C(0, 0, 0).

First we define the position vectors for the three defining points.
(%i6) a: [1, 1, 1];

(%o6)

[1, 1, 1]
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Figure 2: A plot of an ellipsoid

(%i7) b: [1, 2, 3];

(%o7)

[1, 2, 3]

(%i8) c: [0, 0, 0];

(%o8)

[0, 0, 0]

Next, we find the vectors from A to B, and A to C.

(%i9) ab: b - a;

(%o9)

[0, 1, 2]

(%i10) ac: c - a;

(%o10)

[−1,−1,−1]

Then, we find the normal vector to the plane. (Recall that we need the vect package to
do cross products.)

(%i11) load(vect);
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(%o11)

/usr/local/share/maxima/5.19.2/share/vector/vect.mac

(%i12) n: express(ab ~ ac);

(%o12)

[1,−2, 1]

Finally, we set up the defining equation of the plane, which takes the form

n · r = n · r0.

(%i13) r: [x, y, z];

(%o13)

[x, y, z]

(%i14) r0: a;

(%o14)

[1, 1, 1]

(%i15) plane: n . r = n . r0;

(%o15)

z − 2 y + x = 0

The only remaining task is to make the plot. See Figure BLANK.

(%i16) draw3d(enhanced3d = true,implicit(plane,x,-4,4,y,-4,4,z,-4,4));

(%o16)

[gr3d (implicit)]

We can do more exotic plots, like cones. Let’s do a standard cone with equation

x2 + y2 = z2

(%i17) cone: x^2 + y^2 = z^2;

(%o17)

y2 + x2 = z2

(%i18) draw3d(enhanced3d = true, implicit(cone, x,-1,1, y,-1,1, z,-0.5,0.5));
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Figure 3: Another plot of a plane
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Figure 4: A plot of a cone
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Figure 5: A plot of a hyperboloid

(%o18)

[gr3d (implicit)]

See Figure BLANK. See how the center of the cone looks distorted? It is because we
are plotting the cone in rectangular coordinates. We get a much better plot with spherical
coordinates. More on that later.

Let’s next try a hyperboloid with equation

x2 + y2 − z2 = 1

See Figure BLANK.

(%i19) hyperboloid: x^2 + y^2 - z^2 = 1;

(%o19)

−z2 + y2 + x2 = 1

(%i20) draw3d(enhanced3d = true, implicit(hyperboloid, x,-2,2, y,-2,2, z,-1.5,1.5));

(%o20)

[gr3d (implicit)]

And we can do a hyperboloid of two sheets, with the equation

−x2 − y2 + z2 = 1.
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Figure 6: Another plot of a hyperboloid

See Figure BLANK.

(%i21) hyprbld2: -x^2 - y^2 + z^2 = 1;

(%o21)

z2 − y2 − x2 = 1

(%i22) draw3d(enhanced3d = true, implicit(hyprbld2, x,-2,2, y,-2,2, z, -2,2));

(%o22)

[gr3d (implicit)]

2.3 Vector Valued Functions

We define vector functions in Maxima just like we would any other function; the only differ-
ence is that the return value is a vector.

(%i1) r(t) := [t, cos(t), sin(t)];

(%o1)

r (t) := [t, cos t, sin t]

Once we have the function we can plug in values of t to evaluate.

(%i2) r(1);
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Figure 7: A space curve in 3-d

(%o2)

[1, cos 1, sin 1]

(%i3) float(%);

(%o3)

[1.0, .5403023058681398, .8414709848078965]

Now let’s try some plotting. Let’s first try a space curve of the vector function. We need
the draw package to make this happen. Once we have it loaded, we do space curves with the
parametric function inside of a draw command.

(%i4) load(draw);

(%o4)

/usr/local/share/maxima/5.19.2/share/draw/draw.lisp

(%i5) draw3d(parametric(cos(t), -cos(t), sin(t), t, -4, 4));

(%o5)

[gr3d (parametric)]

See Figure 1. Sometimes the line width of a space curve leaves something to be desired.
We can fix the issue with the line width argument to the draw command. See Figure 2.
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Limits of vector functions operate just like limits of everything else. Notice below how
to do limits from the right and left.

(%i6) limit(r(t), t, 2);

(%o6)

[2, cos 2, sin 2]

(%i7) float(%);

(%o7)

[2.0,−.4161468365471424, .9092974268256817]

(%i8) limit(r(t), t, 2, plus);

(%o8)

[2, cos 2, sin 2]

(%i9) limit(r(t), t, 3, minus);

(%o9)

[3, cos 3, sin 3]

Derivatives of vector-valued functions are, again, just like their one-valued counterparts.

(%i10) diff(r(t), t);

(%o10)

[1,− sin t, cos t]

We need to be careful, here. In both Maple and Maxima the return value of diff(r(t),t)
is an expression, and is NOT a function (although it sure does look like one). Looks are
deceptive in this case. Watch what happens if we try to use it like a function.

(%i11) wrong(t) := diff(r(t),t);

(%o11)

wrong (t) := diff (r (t) , t)

(%i12) wrong(1);

** error while printing error message **
~:M: second argument must be a variable; found ~M
#0: wrong(t=1)
– an error. To debug this try debugmode(true);

This is not right. The way to get around this in Maple is to do D(r(t),t), and the way
to get around this in Maxima is to do the following.
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(%i13) define(rp(t), diff(r(t), t));

(%o13)

rp (t) := [1,− sin t, cos t]

Now we get what we expect.

(%i14) float(rp(1));

(%o14)

[1.0,−.8414709848078965, .5403023058681398]

We may define the unit tangent vector T as the normalized derivative of r. We do this
with the uvect function in the eigen package.

(%i15) load(eigen);

(%o15)

/usr/local/share/maxima/5.19.2/share/matrix/eigen.mac

(%i16) uvect(rp(t));

(%o16)

[

1
√

(sin t) 2 + (cos t) 2 + 1
,− sin t

√

(sin t) 2 + (cos t) 2 + 1
,

cos t
√

(sin t) 2 + (cos t) 2 + 1

]

(%i17) trigsimp(%);

(%o17)

[

1√
2
,−sin t√

2
,
cos t√

2

]

(%i18) define(T(t), %);

(%o18)

T (t) :=

[

1√
2
,−sin t√

2
,
cos t√

2

]

To get the unit normal vector we need to get the derivative of T and normalize.

(%i19) define(Tp(t), diff(T(t), t));

(%o19)

Tp (t) :=

[

0,−cos t√
2

,−sin t√
2

]
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(%i20) uvect(Tp(t));

(%o20)

[

0,− cos t
√

(sin t) 2 + (cos t) 2
,− sin t

√

(sin t) 2 + (cos t) 2

]

(%i21) trigsimp(%);

(%o21)

[0,− cos t,− sin t]

(%i22) define(N(t), %);

(%o22)

N (t) := [0,− cos t,− sin t]

Now we find the binormal vector, B, by calculating the cross product of T and N.
Remember to do load(vect) if you haven’t already during the session.

(%i23) load(vect);

(%o23)

/usr/local/share/maxima/5.19.2/share/vector/vect.mac

(%i24) express(T(t) ~ N(t));

(%o24)

[

(sin t) 2

√
2

+
(cos t) 2

√
2

,
sin t√

2
,−cos t√

2

]

(%i25) trigsimp(%);

(%o25)

[

1√
2
,
sin t√

2
,−cos t√

2

]

(%i26) define(B(t), %);

(%o26)

B (t) :=

[

1√
2
,
sin t√

2
,−cos t√

2

]

(%i27) float(B(1));

(%o27)

[.7071067811865475, .5950098395293859,−.3820514243700898]
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2.4 Arc Length and Curvature

There is no special Maxima function for the curvature but we can do it with the formulas
we learned in class. Recall from the last section that r(t) = 〈t, cos t, sin t〉 and

T(t) =

〈

1√
2
, −sin t√

2
,

cos t√
2

〉

.

with derivative

T′(t) =

〈

0, −cos t√
2

, −sin t√
2

〉

.

(%i1) r(t) := [t, cos(t), sin(t)];

(%o1)

r (t) := [t, cos t, sin t]

(%i2) rp(t) := [1 ,-sin(t), cos(t)];

(%o2)

rp (t) := [1,− sin t, cos t]

(%i3) Tp(t) := [0, -cos(t), sin(t)]/sqrt(2);

(%o3)

Tp (t) :=
[0,− cos t, sin t]√

2

(%i4) sqrt(Tp(t) . Tp(t))/sqrt(rp(t) . rp(t));

(%o4)

√

(sin t)2

2
+ (cos t)2

2
√

(sin t) 2 + (cos t) 2 + 1

(%i5) trigsimp(%);

(%o5)

1

2

(%i6) define(kappa(t), %);

(%o6)

κ (t) :=
1

2

We have a lot of practice with derivatives, but we can integrate, too.

(%i7) integrate(r(t), t);
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(%o7)

[

t2

2
, sin t,− cos t

]

With integrals we can compute the arc length, but be warned, the arc length may only
*rarely* be calculated in closed form. More often than not the arc length can not be repre-
sented by an elementary function. We do an example for the sake of argument. We will define
a simple vector function, calculate the derivative, and integrate the norm of the derivative.

(%i8) g(t) := [2 * t, 3 * sin(t), 3 * cos(t)];

(%o8)

g (t) := [2 t, 3 sin t, 3 cos t]

(%i9) define(gp(t), diff(g(t), t));

(%o9)

gp (t) := [2, 3 cos t,−3 sin t]

(%i10) integrate(trigsimp(sqrt(gp(t) . gp(t))), t, 0, 2*%pi);

(%o10)

2
√

13 π

Note that we used the special notation %pi for our favorite mathematical constant. We
need the same thing for Euler’s constant %e and the imaginary unit %i.

Also note that we wrapped sqrt(gp(t) . gp(t)) with trigsimp in the integrate

call. As of the time of this writing, there is a bug in Maxima so that the integral is not
computed correctly without the simplification. See Bug ID: 2880797 in the Maxima bug
tracker.

Especially with arc lengths sometimes we need to do numerical integration instead of
symbolic integration. We can do it with the romberg function.

(%i11) romberg(sqrt(gp(t) . gp(t)), t, 0, 2*%pi);

(%o11)

22.65434679827795

3 Functions of Several Variables

Now let’s try some multivariate functions.

(%i1) f(x,y) := (x^2 - y^2)^2;
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Figure 8: A plain surface plot of a function of two variables

(%o1)

f (x, y) :=
(

x2 − y2
)

2

Let’s take a look at a plot.

(%i2) load(draw);

(%o2)

/usr/local/share/maxima/5.19.2/share/draw/draw.lisp

(%i3) draw3d(explicit(f(x,y), x, -3, 3, y, -3, 3));

(%o3)

[gr3d (explicit)]

See Figure BLANK.
The important part is to enclose the function with explicit(). We can get a fancier,

colored plot if we put enhanced3d = true at the beginning of the function call.

(%i4) draw3d(enhanced3d = true, explicit(f(x,y), x, -3, 3, y, -3, 3));

(%o4)

[gr3d (explicit)]

We can see level curves (also known as a contour map) of the function f with the following:
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Figure 9: An enhanced surface plot of a function of two variables

(%i5) draw3d(explicit(f(x,y), x, -5, 5, y, -5, 5),

contour_levels = 15,

contour = map);

(%o5)

[gr3d (explicit)]

An alternative is to use

(%i6) contour_plot(f(x,y), [x, -5, 5], [y, -5, 5] );

(%o6)

false

The contour map is a 2D plot. If we raise the contour lines up to the plot surface then
the lines are more precisely called horizontal traces. Here is a plot of these.

(%i7) draw3d(enhanced3d = true,

explicit(f(x,y), x, -3, 3, y, -3, 3),

contour_levels = 15,

contour = surface,

surface_hide = true);

(%o7)

[gr3d (explicit)]
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Figure 10: A contour plot, showing level curves of f .

See Figure 6. We do surfacehide = true so that we can see the traces better.

3.1 Partial Derivatives

We do partial derivatives in the natural way. For example, for the partial derivative with
respect to x we do

(%i1) diff(f(x,y), x);

(%o1)

d

d x
f (x, y)

The long way to get higher order derivatives is to nest the diff calls. The second order
partial derivative is

(%i2) diff(diff(f(x,y), x), x);

(%o2)

d2

d x2
f (x, y)

and the second partial with respect to x then y is

(%i3) diff(diff(f(x,y), x), y);
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Figure 11: Another form of contour plot which shows horizontal traces on f

(%o3)

d2

d x d y
f (x, y)

For higher order partial derivatives a quicker way is to do

(%i4) G: x^7 * y^8;

(%o4)

x7 y8

(%i5) diff(G, x, 1, y, 2, x, 3);

(%o5)

47040x3 y6

The above first differentiates G with respect to x three times, then with respect to y
two times, and finally with respect to x one time; that is, the arguments match the Leibnitz
notation for partial derivatives.

3.2 Linear Approximation and Differentials

A function of two variables is differentiable at a point (x0, y0) when it is closely approximated
by the tangent plane to the curve at (x0, y0). We saw in class how to find the tangent plane
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at (x0, y0), and we also discussed how we could use the tangent plane to approximate values
of f(x, y) for (x, y) near (x0, y0).

We will not bother with the tangent plane in Maxima, but we can quickly find the linear
approximation L to f (which is essentially the same thing) by means of the taylor function.

Let f(x, y) = ex2

sin(y) and let us find the linear approximation of f at the point (1, 2).

(%i1) f(x,y) := exp(x^2) * sin(y);

(%o1)

f (x, y) := exp x2 sin y

(%i2) taylor(f(x,y), [x,y], [1,2], 1);

(%o2)

sin 2 e + (2 sin 2 e (x − 1) + cos 2 e (y − 2)) + · · ·

The function L is shown in the output as everything but the three dots. The ellipsis is a
way to indicate that the returned expression is an approximation to the original function.

The linear approximation arguments are all self explanatory except the last. It represents
the order of the Taylor series. When we find a linear approximation to a differentiable
function what we are actually doing is finding a Taylor series of order 1, about the point
(x0, y0).

We can get the total differential by doing diff without specifying any independent
variables.

(%i3) diff(f(x,y));

(%o3)

ex2

cos y del (y) + 2 x ex2

sin y del (x)

The symbols del(y) and del(x) stand for dy and dx, respectively.

3.3 Chain Rule and Implicit Differentiation

Suppose we have a function of two variables, f(x, y) = ex2

sin y.

(%i1) f(x,y) := exp(x^2) * sin(y);

(%o1)

f (x, y) := exp x2 sin y

We saw earlier what the partial derivatives of f were with respect to x and y. But
suppose x and y are functions of some other variables, for instance,

(%i2) [x,y] : [s^2 * t, s * t^2];
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(%o2)

[

s2 t, s t2
]

Then what are the partial derivatives of f with respect to s and t? Happily for us,
Maxima does the chain rule automatically.

(%i3) diff(f(x,y), s);

(%o3)

4 s3 t2 es4 t2 sin
(

s t2
)

+ t2 es4 t2 cos
(

s t2
)

(%i4) diff(f(x,y), t);

(%o4)

2 s4 t es4 t2 sin
(

s t2
)

+ 2 s t es4 t2 cos
(

s t2
)

That was easy. But be warned that the derivative with respect to x does not work
anymore.

(%i5) diff(f(x,y), x);

** error while printing error message **
~:M: second argument must be a variable; found ~M
– an error. To debug this try debugmode(true);

We could fix this by using different letters, u and v:

(%i6) diff(f(u,v), u);

(%o6)

2 u eu2

sin v

But that is cheating. A better way to fix it is to kill the relationship between x and s, t.

(%i7) kill(x, y);

(%o7)

done

(%i8) diff(f(x,y), x);

(%o8)

2 x ex2

sin y
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Implicit differentiation is relatively easy, given what we have already done. For example,
let’s find the first partial derivatives of z when xyz + x2y3z4 = x + xz.

(%i9) F: x*y*z + x^2*y^3*z^4 - x - x*z;

(%o9)

x2 y3 z4 + x y z − x z − x

(%i10) Fx: diff(F, x);

(%o10)

2 x y3 z4 + y z − z − 1

(%i11) Fy: diff(F, y);

(%o11)

3 x2 y2 z4 + x z

(%i12) Fz: diff(F, z);

(%o12)

4 x2 y3 z3 + x y − x

(%i13) [-Fx/Fy, -Fy/Fz];

(%o13)

[−2 x y3 z4 − y z + z + 1

3 x2 y2 z4 + x z
,

−3 x2 y2 z4 − x z

4 x2 y3 z3 + x y − x

]

3.4 Directional Derivatives and the Gradient

Remember to do load(vect) if you haven’t already during the session. By default Maxima
assumes that the coordinate system is rectangular (cartesian) in the variables x, y, and z. If
you do not want that then you need to change it by means of the scalefactors command.

Given the function of two variables, f(x, y) = ex2

sin y.

(%i1) f(x,y) := exp(x^2) * sin(y);

(%o1)

f (x, y) := exp x2 sin y

We change to the correct coordinate system.

(%i2) load(vect);
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(%o2)

/usr/local/share/maxima/5.19.2/share/vector/vect.mac

(%i3) scalefactors([x,y]);

(%o3)

done

Next we find the gradient.

(%i4) gdf: grad(f(x,y));

(%o4)

grad
(

ex2

sin y
)

(%i5) ev(express(gdf), diff);

(%o5)

[

2 x ex2

sin y, ex2

cos y
]

(%i6) define(gdf(x,y), %);

(%o6)

gdf (x, y) :=
[

2 x ex2

sin y, ex2

cos y
]

The directional derivative of f at the point (1, 2) in the direction of the vector v = 〈3, 4〉
is

(%i7) v: [3,4];

(%o7)

[3, 4]

(%i8) (gdf(1,2) . v)/sqrt(v . v);

(%o8)

6 e sin 2 + 4 e cos 2

5

(%i9) ev(%, diff);

(%o9)

6 e sin 2 + 4 e cos 2

5

(%i10) float(%);
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(%o10)

2.061108499400332

We know from our theory that the directional derivative is maximized when v points in
the direction of the gradient, and the maximum value is the length of the gradient vector.
Let’s see just how big that is.

(%i11) sqrt(gdf(1,2) . gdf(1,2));

(%o11)

√

4 e2 (sin 2) 2 + e2 (cos 2) 2

(%i12) float(ev(%, diff));

(%o12)

5.071228088168654

3.5 Optimization and Local Extrema

To find critical points we need to solve the system of equations fx = 0 and fy = 0. Let
f(x, y) = 2x4 + 2y4 − 8xy.

(%i1) f(x,y) := 2 * x^4 + 2 * y^4 - 8 * x * y;

(%o1)

f (x, y) := 2 x4 + 2 y4 + (−8) x y

Let’s take a look at a plot of f .

(%i2) load(draw);

(%o2)

/usr/local/share/maxima/5.19.2/share/draw/draw.lisp

(%i3) draw3d(enhanced3d = true, explicit(f(x,y), x, -2, 2, y, -2, 2));

(%o3)

[gr3d (explicit)]

See Figure BLANK.
Now let’s take a look at a contour plot of f . We do it just like the plot of the surface,

except we use the argument contour = map.
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Figure 12: A surface plot of f

(%i4) draw3d(explicit(f(x,y), x, -2, 2, y, -2, 2),

contour = map);

(%o4)

[gr3d (explicit)]

See Figure BLANK.
Now let’s find the first order partial derivatives of f , set them equal to zero, and solve for

values of (x, y). We do this with the solve function, which assumes that the expressions are
set equal to zero by default. Keep in mind that solve finds all real and complex solutions;
we only care about the real valued solutions, however, and will ignore the rest.

(%i5) fx : diff(f(x,y), x);

(%o5)

8 x3 − 8 y

(%i6) fy : diff(f(x,y), y);

(%o6)

8 y3 − 8 x

(%i7) solve([fx,fy], [x,y]);
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Figure 13: The level curves of f which suggest two extrema and a saddle point

(%o7)

[[

x = (−1)
1

4 i, y = − (−1)
3

4 i
]

,
[

x = − (−1)
1

4 , y = − (−1)
3

4

]

,
[

x =

− (−1)
1

4 i, y = (−1)
3

4 i
]

,
[

x = (−1)
1

4 , y = (−1)
3

4

]

, [x =

−i, y = i] , [x = i, y = −i] , [x = −1, y = −1] , [x = 1, y = 1] , [x = 0, y = 0]
]

Critical points are at (0, 0), (1, 1), and (−1,−1). (Note that both partial derivatives exist
everywhere.) We need to see what the Hessian says at those locations.

(%i8) H: hessian(f(x,y), [x,y]);

(%o8)

(

24 x2 −8
−8 24 y2

)

(%i9) determinant(H);

(%o9)

576 x2 y2 − 64

We do the Second Derivative Test by plugging in the above three points into fxx and
det(H). (Of course we can do it mentally but let’s try it with Maxima.) A quick way to plug
numbers into expressions is with the subst function.
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(%i10) subst([x = -1, y = -1], diff(fx, x));

(%o10)

24

(%i11) subst([x = -1, y = -1], determinant(H));

(%o11)

512

From the above we conclude that (−1,−1) is a local minimum of f , and the value is

(%i12) f(-1,-1);

(%o12)

−4

Doing the same for (0, 0) and (1, 1) shows that (0, 0) is a saddle point and (1, 1) is also
a local minimum (we know this already by symmetry).

3.6 Lagrange Multipliers

Find the extreme values of the function f(x, y) = 2x2 + y2 on the circle x2 + y2 = 1.

(%i1) f(x,y) := 2 * x^2 + y^2;

(%o1)

f (x, y) := 2 x2 + y2

(%i2) g: x^2 + y^2;

(%o2)

y2 + x2

We set up the system of equations grad(f) = h * grad(g), g = 1. (We do not use
"lambda" because that name is already reserved for an existing function in Maxima.)

(%i3) eq1: diff(f(x,y), x) = h * diff(g, x);

(%o3)

4 x = 2 h x

(%i4) eq2: diff(f(x,y), y) = h * diff(g, y);

(%o4)

2 y = 2 h y

(%i5) eq3: g = 1;
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(%o5)

y2 + x2 = 1

Now we solve the system for x, y, and h.

(%i6) solve([eq1, eq2, eq3], [x, y, h]);

(%o6)

[[x = 1, y = 0, h = 2] , [x = −1, y = 0, h = 2] , [x = 0, y = −1, h = 1] , [x = 0, y = 1, h = 1]]

We see that the extreme values lie among (1, 0), (−1, 0), (0,−1), (0, 1).

(%i7) [f(1,0), f(-1,0), f(0,-1), f(0,1)];

(%o7)

[2, 2, 1, 1]

So the minima occur at (1, 0) and (−1, 0); the maxima occur at (0,−1) and (0, 1).

4 Multiple Integration

4.1 Double Integrals

We can iterate integrate calls. For example, suppose we wanted to calculate

∫ ∫

(

x3 − 3xy
)

dy dx.

(%i1) f(x,y) := x^3 - 3*x*y;

(%o1)

f (x, y) := x3 − 3 x y

(%i2) integrate(integrate(f(x,y), y), x);

(%o2)

x4 y

4
− 3 x2 y2

4

Maxima does not provide arbitrary constants of integration; the user must remember
them. It is easy to do definite integration, for example, we could do

∫ 1

0

∫ 2−x

√
x

(

x3 − 3xy
)

dy dx.
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with
(%i3) integrate(integrate(f(x,y), y, x^1/2, 2 - x), x, 0, 1);

(%o3)

−173

160

4.2 Integration in Polar Coordinates

We can integrate in polar coordinates in the obvious way. We simply make the substitution
x = rcos(theta) and y = rsin(theta), then don’t forget to multiply the integrand by r.

(%i1) f(x,y) := x^2 + y^2;

(%o1)

f (x, y) := x2 + y2

(%i2) [x,y]: [r * cos(theta), r * sin(theta)];

(%o2)

[r cos ϑ, r sin ϑ]

(%i3) integrate(integrate(f(x,y) * r, r, 0, 2*cos(theta)), theta, -%pi/2,

%pi/2);

(%o3)

3 π

2

4.3 Triple Integrals

Triple integrals are done just like double integrals: by nested integrate calls.
Let’s do

∫ 1

0

∫ −x

0

∫ x+y

0

x2yz dz dy dx.

(%i1) integrate(integrate(integrate(x^2*y*z,z,0,x+y),y,0,-x),x,0,1);

(%o1)

1

168
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4.4 Integrals in Cylindrical and Spherical Coordinates

These integrals are computed just like ordinary triple integrals except we multiply the inte-
grand by r (in cylindrical coordinates) or ρ2 sin(φ) (in spherical coordinates). See the next
section for a more general way of doing this. It is sometimes useful to use plots to decide
how to represent the region of integration.

Let’s do an integral in cylindrical coordinates.

∫ 2

−2

∫

√
4−x2

0

∫ 3

0

yz dz dy dx.

Note that r goes from 0 to 2 and θ goes from 0 to π.

(%i1) f(x,y,z) := y*z;

(%o1)

f (x, y, z) := y z

(%i2) [x,y,z] : [r*cos(theta), r*sin(theta), z];

(%o2)

[r cos ϑ, r sin ϑ, z]

(%i3) integrate(integrate(integrate(f(x,y,z)*r, z,0,3), r,0,2), theta,0,%pi);

(%o3)

24

Now let’s do an integral in spherical coordinates.

∫ 1

−1

∫

√
1−x2

0

∫

√
1−x2−y2

0

xz dz dy dx.

Note that ρ goes from 0 to 1, θ goes from 0 to π, and φ goes from 0 to π/2.

(%i4) kill(f,x,y,z);

(%o4)

done

(%i5) f(x,y,z) := x*z;

(%o5)

f (x, y, z) := x z

(%i6) [x,y,z] : [rho*sin(phi)*cos(theta), rho*sin(phi)*sin(theta), rho*cos(theta)];

(%o6)

[sin ϕρ cos ϑ, sin ϕρ sin ϑ, ρ cos ϑ]
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(%i7) integrate(integrate(integrate(f(x,y,z)*rho^2*sin(phi),rho,0,1),theta,0,%pi),

phi,0,%pi/2);

(%o7)

π2

40

4.5 Change of Variables

For more general transformations x = x(u, v) and y = y(u, v) we can use the jacobian

function in the linearalgebra package, which is loaded by default. Let f(x, y) = x + y,
and we will calculate

∫ ∫

R

(x + y) dA.

(%i1) f(x,y) := x + y;

(%o1)

f (x, y) := x + y

Let’s make the transformation x = u3 − v4 and y = 5uv.

(%i2) [x,y]: [u^3 - v^4, 5 * u * v];

(%o2)

[

u3 − v4, 5 u v
]

We need the Jacobian:

(%i3) J: jacobian([x,y], [u,v]);

(%o3)

(

3 u2 −4 v3

5 v 5 u

)

(%i4) J: determinant(J);

(%o4)

20 v4 + 15 u3

We were lucky in this example because the Jacobian is positive as long as u is positive (or
just not terribly negative). If this had not happened then we would need to be careful about
the sign of J , which in principle could be a problem because Maxima does not integrate
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absolute value. Nevertheless, we finish up with the integration. It takes the form (we will
make up random limits of integration, but in a given problem we would need to determine
these)

∫ 4

3

∫ 2

1

f (x(u, v), y(u, v))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

du dv.

(%i5) integrate(integrate(f(x,y) * J, u,1,2), v,3,4);

(%o5)

−113349305

252

5 Vector Calculus

5.1 Vector Fields

A vector field is a vector function defined on a subset of R
3 (or R

2) that assigns a vector (of
the same dimension) with each point in the set.

Two-dimensional

A two dimensional vector field associates a two-dimensional vector with each point in the
plane (or a subset thereof). We may use the draw package to plot vector fields with Maxima.

load(draw);

Let us plot the 2D vector field F(x, y) = 〈cos y, x〉.
The important parts of the following code are the first line where we specify that plotting

should be done from -6 to 6 and in the vf2d line where we specify function values [cos(y),x]
in the second list. The division by 6 in that same line is just to make the arrows smaller
so that they may more easily be seen. The rest of the code is boilerplate and may be
copied/pasted verbatim.

coord: setify(makelist(k,k,-4,4));

points2d: listify(cartesian_product (coord ,coord ));

vf2d(x,y):= vector ([x,y],[cos(y),x]/6);

vect2: makelist(vf2d(k[1],k[2]),k,points2d );

apply(draw2d , append ([ color=blue], vect2 ));

See Figure BLANK.

Gradient vector fields

The gradient vector ∇f defines a vector field on the domain of f . We can plot this vector
field in two ways: with the draw package, or with the ploteq function.

First we need a gradient function. Let’s start with f(x, y) = x2 − y2. Then, of course,
∇f = 〈2x, −2y〉.
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Figure 14: A plot of the vector field F(x, y) = 〈cos y, x〉

kill(f, x, y, gdf);

f(x,y) := x^2 - y^2;

scalefactors ([x,y]);

gdf(x,y) := grad(f(x,y));

ev(express(gdf(x,y)), diff);

define(gdf(x,y), %);

Next we make the plot. (We have omitted the first few lines because we will use the same
values from the last example. However, these lines should not ordinarily be skipped).

vf2d(x,y) := vector ([x,y], gdf(x,y)/8);

vect2: makelist(vf2d(k[1],k[2]),k,points2d );

apply(draw2d , append ([ head_length =0.1, color=blue], vect2 ));

Alternatively, we can do it in one line with the ploteq function as long as we remember to
put a minus sign in front of the original function (ploteq plots vectors that are the opposite
of gradient vectors).

ploteq(-(x^2+y^2),[x,y],[x,-4,4],[y,-4,4],[vectors ,"blue "]);

Three-dimensional

This is almost identical to the 2D case, except that we need to account for z in the code and
use draw3d instead of draw2d.

Note that with 3d plots the graph can be dynamically moved around with the mouse to
look from different angles. Also note that the arrows in a vector field plot are often times
difficult to see because of their length. I usually scale them down to see the relationships
better.
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Figure 15: The gradient vector field ∇f for the function f(x, y) = x2 − y2

Let’s plot the vector field
F(x, y, z) = 〈z, x, y〉.

coord: setify(makelist(k,k,-2,2));

points3d: listify(cartesian_product (coord ,coord ,coord ));

vf3d(x,y,z):= vector ([x,y,z],[z,x,y]/8);

vect3: makelist(vf3d(k[1],k[2],k[3]),k,points3d );

apply(draw3d , append ([ color=blue], vect3 ));

See Figure BLANK.

5.2 Line Integrals

We are given a smooth space curve C defined by the parametric equations x = x(t), y = y(t),
z = z(t), for a ≤ t ≤ b, and a function f which is defined on C. Sometimes we work with a
vector function r instead of the parametric equations:

r(t) = 〈x(t), y(t), z(t)〉 , for a ≤ t ≤ b.

With respect to arc length

These integrals are of the form
∫

C

f(x, y, z) ds

which can be reparameterized as

∫ b

a

f (x(t), y(t), z(t))

√

(

dx

dt

)2

+

(

dy

dt

)2

+

(

dz

dt

)2

dt
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Figure 16: A plot of the vector field F(x, y, z) = 〈z, x, y〉

or more compactly as
∫ b

a

f (r(t)) |r′(t)| dt.

For example, let’s start with f(x, y) = x2 + y2. We will integrate along the curve C
parameterized by 〈cos t, sin 2t〉 for 0 ≤ t ≤ 1.

(%i1) f(x,y) := x^2 + y^2;

(%o1)

f (x, y) := x2 + y2

(%i2) [x,y]: [cos(t), sin(2*t)];

(%o2)

[cos t, sin (2 t)]

(%i3) rp: diff([x,y], t);

(%o3)

[− sin t, 2 cos (2 t)]

(%i4) romberg(f(x,y)*sqrt(rp . rp), t, 0, 1);

(%o4)

1.635879048260743
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Of vector fields

Here we are trying to compute integrals of the form
∫

C

F · dr =

∫

C

F (r(t)) · r′(t) dt,

alternately written
∫

C

P dx + Q dy + R dz, where F = P i + Q j + Rk.

Let’s work with the vector field F(x, y, z) = 〈−xy3, xz, yz2〉. We will integrate along
the curve C parameterized by 〈t2, t3, t4〉 for 0 ≤ t ≤ 1.

(%i5) F(x,y,z) := [-x*y^3, x*z, y*z^2];

(%o5)

F (x, y, z) :=
[

(−x) y3, x z, y z2
]

(%i6) [x,y,z]: [t^2, t^3, t^4];

(%o6)

[

t2, t3, t4
]

(%i7) romberg(F(x,y,z) . diff([x,y,z], t), t, 0, 1);

(%o7)

.4461538461603605

5.3 Conservative Vector Fields and Finding Scalar Potentials

We know from theory that a vector field F is conservative if there exists a function f such
that F = ∇f . Further, we know that fields defined on suitably nice regions are conservative
if they are irrotational.

We can check whether a field is conservative with the curl function in the vect package.
For example, let’s check the field F(x, y) = (4x3 − 5y2)i + (5y3 − 3x)j.

(%i1) F(x,y) := [4*x^3 - 5*y^2, 5*y^3 - 3*x];

(%o1)

F (x, y) :=
[

4 x3 − 5 y2, 5 y3 − 3 x
]

(%i2) load(vect);

(%o2)

/usr/local/share/maxima/5.19.2/share/vector/vect.mac

(%i3) scalefactors([x,y]);
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(%o3)

done

(%i4) curl(F(x,y));

(%o4)

curl
([

4 x3 − 5 y2, 5 y3 − 3 x
])

(%i5) express(%);

(%o5)

d

d x

(

5 y3 − 3 x
)

− d

d y

(

4 x3 − 5 y2
)

(%i6) ev(%, diff);

(%o6)

10 y − 3

Since the curl is not zero, the field is not conservative. How about

F(x, y) = (x3 + 5y)i + (5y3 + 5x)j?

(%i7) F(x,y) := [x^3 + 5*y, 5*y^3 + 5*x];

(%o7)

F (x, y) :=
[

x3 + 5 y, 5 y3 + 5 x
]

(%i8) ev(express(curl(F(x,y))), diff);

(%o8)

0

Since the curl is zero, this field is conservative. So the function f satisfying F = ∇f
exists. We can find the scalar potential f in Maxima with the potential function (also in
the vect package).

Note, however, that because of a bug in Maxima at the time of this writing we need to
do a little fancy footwork. We cannot use the letter x in the function call; instead we will
change it to another letter. When we do that, we must follow it by a call to scalefactors.

(%i9) F(u,v) := [u^3 + 5*v, 5*v^3 + 5*u];

(%o9)

F (u, v) :=
[

u3 + 5 v, 5 v3 + 5 u
]

(%i10) scalefactors([u,v]);
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(%o10)

done

(%i11) potential(F(u,v));

(%o11)

5 v4 + 20 u v + u4

4

We can easily check that f(x, y) = (5x4+20xy+y4)/4 satisfies F = ∇f . The fundamental
theorem for line integrals now allows us to compute line integrals that look like

∫

C

F · dr =

∫

C

∇f · dr,

which simplifies to f(r(b))− f(r(a)). So, for instance, for a curve C with initial point (0, 1)
and terminal point (2, 3) we have

∫

C

F · dr =

∫

C

[

(x3 + 5y)i + (5y3 + 5x)j
]

· dr

to be equal to (using the result from potential, above)

(%i12) define(f(u,v), %);

(%o12)

f (u, v) :=
5 v4 + 20 u v + u4

4

(%i13) f(2,3) - f(0,1);

(%o13)

134

All of the above can be done in three dimensions, too. We need only to do scalefactors([x,y,z])
and scalefactors([u,v,w]), when appropriate.

6 Miscellaneous

6.1 Saving your plots

In most Microsoft Windowsr applications, you can save a plot either with a direct option
in a File menu, or if nothing else, by right-clicking on the plot and selecting "Copy". Un-
fortunately, with the plots described in this document (and on Linux, at least), this is not
possible. Instead, the user must separately send the plot to a file.

In the draw package plots can be saved with the terminal argument. The following are
a couple of examples of what this looks like, and see the documentation for terminal for
more details and options. For a standard 2d plot you can usually get by with something like
this:
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draw3d(enhanced3d = true ,

implicit(plane1 , x,-4,4, y,-4,4, z, -6,6),

terminal=eps_color , file_name ="plot ");

But for the more complicated vector field plots you need something like this:

apply(draw3d ,

append ([ color=blue ,

terminal=eps_color ,

file_name ="plot"],

vect3 ));

6.2 Saving your Maxima commands

Once you type a bunch of commands into Maxima you will often want to save those com-
mands into a file to be opened and used again later. The following command will pick out
all of the Maxima commands from the session and save them into a text file that can be
opened later with any text editor.

Note that only commands since the last kill(all) statement will be saved.

stringout (" nameoffile.txt", input , file_output_append = true);
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7 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as "you". You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.
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The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released under
this License. If a section does not fit the above definition of Secondary then it is not allowed
to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LATEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some word processors for
output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work’s title, preceding the beginning of
the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to
the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the
Title" of such a section when you modify the Document means that it remains a section
"Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.
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2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a com-
plete Transparent copy of the Document, free of added material. If you use the latter option,
you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated lo-
cation until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
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and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be listed in
the History section of the Document). You may use the same title as a previous version if
the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its Title Page, then add an
item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of
the section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as

Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
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the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but en-
dorsements of your Modified Version by various parties–for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes a
cover text for the same cover, previously added by you or by arrangement made by the same
entity you are acting on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles
in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various
original documents, forming one section Entitled "History"; likewise combine any sections
Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all
sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.
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7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent doc-
uments or works, in or on a volume of a storage or distribution medium, is called an "ag-
gregate" if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit. When the Document
is included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "His-
tory", the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to notify
you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
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terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server.
A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of
copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and subse-
quently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant
sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-
BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible
for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:
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Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foun-
dation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled "GNU Free Doc-
umentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts."
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.
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