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Abstract

This is an overview of current research in origami applied to mechanical engineering. Fundamental concepts and

definitions commonly used in origami are introduced, including a background on key mathematical origami findings.

An outline of applications in mechanical engineering is presented. The foundation of an origami-based design procedure

and software that is currently available to aid in design are also described. The goal of this review is to introduce the

subject to mechanical engineers who may not be familiar with it, and encourage future origami-based design and

applications.
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Introduction

The word origami, the ancient art of paper folding,
combines the Japanese roots ori, meaning ‘folded’,
and kami, meaning ‘paper’.1 Despite the art’s rich aes-
thetic history, the vast majority of practical applica-
tions have come within the past 50 years. Advances in
computer science, number theory, and computational
geometry have paved the way for powerful new ana-
lysis and design techniques, which now extend far
beyond the art itself. Even though mechanical engin-
eering has always been concerned with devices that
allow relative motion between components, which in
a sense can be considered folding, the field of mech-
anical engineering origami is a recent development and
it is leading to new and useful results. Folding link-
ages in one dimension, planar shapes in two dimen-
sions, and polyhedra in three dimensions can now be
efficiently designed and analyzed using origami con-
cepts. This paper surveys the current state of research
in origami applied to mechanical engineering.
It briefly reviews mathematical and computational
origami, disciplines on which most engineering rests,
and overviews major applications that have been
developed.

Several subdisciplines of origami that are useful in
mechanical engineering have emerged over the years.
Orimimetrics is the application of folding to solve
engineering problems.2 Rigid origami considers
creases as hinges and models the material between
creases as rigid, restricting it from bending or deform-
ing during folding. Action origami is concerned with
models that have been folded so that in their final,

deployed state they can move with one or more
degrees of freedom.3 Kinematic origami is designed
to exploit relative motion between components of an
action origami model. Kirigami strays from trad-
itional origami rules by allowing cutting in addition
to creases, but provides a manufacturing advantage
that is sometimes more suited to engineering applica-
tions. In many instances of so-called ‘origami-based
devices’, ‘kirigami’ is the more appropriate label.
It has found direct application in folding/morphing
structures, micro-electromechanical systems, and
cellular core structures for energy dissipation.4–7

First some terms that are common in origami must
be introduced. A crease is a fold, either convex
(mountain) or concave (valley). Collectively, all the
creases make up the crease pattern. A vertex is a
point where two or more creases intersect. The
degree of the vertex is the number of creases emanat-
ing from that vertex. The folded state is the end result
of some folding motion. A pleat is a fold that creates
successive mountain and valley creases that are rela-
tively close to each other. A crimp is similar, but
involves some reverse-folding in a mountain–valley
pattern. Figure 1 illustrates examples of crimp and
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pleat folds. These folds are used to create accordion
and corrugated patterns used in a variety of
applications.

The material used in an origami application is crit-
ical. Artistic origami uses paper which is an elastic
material that prefers to be flat, but other materials
are more useful for engineering. Creasing a sheet is
essentially bending it beyond the yield point so it
becomes plastically deformed. In surfaces with pleat
folding, the physics will find an equilibrium among
the forces that are at play in the crease patterns.
This is important when three-dimensional (3D) struc-
tures are to be built from two-dimensional (2D) sheet
material. If the material can be pieced together cor-
rectly and creased in such a way that each location on
the material wants to locally bend and deform to the
desired configuration, the 3D structures can easily be
manufactured or self-folded.

The rest of this paper is organized as follows.
Section 2 presents some of the mathematically based
definitions and theoretical results in origami. While
not all applications discussed subsequently rely heav-
ily on these results, selected subjects from the state-
of-the-art in origami theory the authors consider most
relevant to mechanical engineering applications are
reviewed because such theoretical results can provide
a framework for more advanced developments in the
field. Section 3 presents the most common crease pat-
terns in origami relevant to mechanical engineering
applications as well as their functions. In both the
art as well as engineering, these crease patters provide
a standard starting point and toolbox of functionality
for origami engineers. Section 4 presents an overview
of origami applications in mechanical engineering
today. Section 5 discusses some of the practical
issues in an origami design procedure, and Section 6
presents an overview of currently available software
tools.

Selected mathematical background
subjects on origami

Although much has been done and written about the
the mathematics of origami, we will merely touch
upon some of the salient geometrical, topological
and optimization aspects relevant to this review.
While it is the case that a very strong connection
between the mathematic subjects in this section and
the applications in Section 4 does not currently exist,
one of the purposes of this review is to present the
most relevant mathematical topics to help facilitate a
development of a closer connection between the
mathematical theory and mechanical engineering
applications.

A polyhedron is any 3D surface composed of poly-
gons, which are 2D flat surfaces with edges that are
straight lines. Origami can be used to create any poly-
hedron from a flat piece of paper by folding.8 Proving
this involves folding a piece of paper down to a long,
narrow rectangle. Next, the polygonal faces of the
polyhedron that is to be modeled must be triangu-
lated. This allows each resulting triangle on the face
of the polyhedron to be covered. A zig-zag path, par-
allel to the shared edge with the next triangle and
starting at the opposite corner, is used to visit each
triangle on the polyhedron. Turn gadgets, which fold
the strip onto itself with a mountain fold and folding
the back layer over at the required angle, are used to
create the path.

A path that minimizes overlap and covers each tri-
angle only once is, in some sense, optimal for engin-
eering applications. Hamiltonian refinement is a
procedure that guarantees each triangle is only visited
once through the use of a spanning tree, which
is a graph that reaches all the vertices in the crease
pattern.1 This idealized path can be determined
by drawing a line connecting the midpoints of each

Figure 1. Left: pleat folds. Right: crimp folds.
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triangle. If this method does not result in the most
efficient tree, then splitting each triangle into six smal-
ler triangles will prevent revisiting any triangles as the
entire polyhedron is covered.

The Huzita–Hatori (or Huzita–Justin) axioms are a
set of rules in paper folding that define the full scope
of single linear folds using points and lines. A line is
either a crease in a piece of paper or the boundary of
the paper. A point is an intersection of two lines. The
axioms are complete in the sense that ‘‘these are all of
the operations that define a single fold by alignment
of combinations of points and finite line segments’’.9

They are the foundation of logical constructions that
can be used to form any regular polygon, and can also
solve quadratic, cubic, and quartic equations, trisect
angles, and determine cube roots.

The axioms (see http://origami.ousaan.com/library/
conste.html) state that: (a) given two points p1 and p2,
we can fold a line connecting them; (b) given two points
p1 and p2, we can fold p1 onto p2; (c) given two lines ‘1
and ‘2, we can fold ‘1 onto ‘2; (d) given a point p1 and a
line ‘1, we can make a fold perpendicular to ‘1 passing
through the point p1; (e) given two points p1 and p2 and
a line ‘1, we can make a fold that places p1 onto ‘1
and passes through the point p2; (f) given two points
p1 and p2 and two lines ‘1 and ‘2, we can make a fold
that places p1 onto ‘1 and places p2 onto ‘2, and
(g) given a point p1 and two lines ‘1 and ‘2, we can
make a fold perpendicular to ‘2 that places p1 onto
‘1. These operations describe simple folds and provide
the basis of mathematical origami.

Flat-foldability is the property of a design that can
be folded into a single plane with a thickness deter-
mined by the material. Making generalizations on
global flat-foldability for multi-vertex folds is an
NP-hard problem and remains open, however the
single-vertex case is well understood. The crease pat-
tern emanating from one vertex is defined by n angles
between the creases, the sum of which is 360� for a flat
piece of paper. Consider the crease pattern shown in
Figure 2, which is flat-foldable.

For a single vertex to be flat-foldable, the following
conditions must be satisfied.

. Kawasaki’s theorem states that if the angles are
sequentially numbered, then the sum of the odd
angles must equal the sum of the even angles.
This is evident in Figure 2, e.g. the sum of angles
1, 3 and 5 is equal to the sum of angles 2, 4 and 6 in
the vertex on the left.

. Maekawa’s theorem states that the number of
mountains must differ from the number of valleys
by � 2. Every vertex in the crease pattern shown in
Figure 2 satisfies this condition, where mountain
and valley creases are black and gray respectively.

. The degree n must be even to satisfy Maekawa’s
theorem.

. For a complete origami design with multiple ver-
tices, the crease pattern has to be two-colorable,

meaning that each panel in the crease pattern can
be colored with only one of two colors without
having the same color meet at any border. This is
again a necessary condition for flat-foldability of
multi-vertex designs, along with each individual
vertex satisfying the criteria above.

Further generalizations of these theories have been
made with the intent of imposing sufficiency and
investigating global foldability.10

Design of folding patterns

To design an origami model, it is necessary to
determine the crease pattern that will dictate the
folds necessary to achieve the desired 3D form.
An origami base is the first step in the folding process,
and it is the foundation of every design. Several
algorithms have been developed to design efficient
crease patterns to fold bases, the most popular being
the tree method.11,12 A limb is a flap on an origami
base structure and limbs are independently folded
as the second step to add intricacy to a model. The
tree method finds the folding pattern of the smallest
possible square into some desired uniaxial base,
and the projection onto a plane is the shadow tree.
The base is uniaxial because the algorithm can
produce bases with hinged flaps that can be folded
to lie in a single vertical plane, resulting in a single-
line shadow tree. TreeMaker is a program based on
this idea and it generates the crease pattern necessary
to fold any specific uniaxial base from the smallest
square of paper. Consider folding a model of a
cat, for example, where the base would consist of
the body with six limbs (one head, one tail, and four
legs). The shadow tree and uniaxial base for such a
lizard can be represented by the design shown in
Figure 3.

Figure 2. Flat-folding crease pattern. Mountain and valley

creases are black and gray respectively.
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To generate the crease pattern from the smallest
piece of paper, consider two points pi and pj on the
paper before it is folded and the corresponding points
si and sj projected onto the shadow tree after the uni-
axial base is folded. The distance between si and sj,
i.e. dsi,sj , following the lines that make up the tree, or
the shadow path, must be less than or equal to dpi,pj .
This leads to a key lemma in tree theory, which forms
an invariant constraint that must be satisfied through-
out every reduction made in the algorithm. The path
between si and sj is termed active if si and sj are leaves,
meaning they lie on the end of the limb such that only
one point in the paper maps to the leaf on the shadow
tree, and if dpi,pj ¼ dsi,sj . Active paths are used to scale
the shadow tree to its smallest size to fit on a piece of
paper.

Let l be a scale factor that satisfies dpi,pj5l dsi,sj .
The scale optimization step of the algorithm involves
maximizing l, or driving the shadow paths to become
active paths. It is possible to design an efficient uni-
axial base folding pattern by drawing circles centered
on the leaf edges and with diameters equal to the
length of the limb on the base in its folded state,
where the circle defines the maximum possible reach
distance after folding from the point at its center. This
disk packing method uses non-linear optimization to
arrive at a reasonable solution.

After optimizing these paths, the folding of the
base can be determined. The points in the shadow
tree, which occur at intersections and ends of lines,
require incident creases in the crease pattern.
Furthermore, the active paths in the shadow tree
guarantee incident creases line up in parallel with a
point in between, because this shortest path is the only
way an active path can exist. In this way, the problem
is broken up into subproblems, where uniaxial bases
are made for each of the convex polygons determined
by active paths or the boundary of the piece of paper.
The constraints of bordering convex polygons must be
satisfied and a universal construction tool is imple-
mented to ensure realizability.

A universal molecule is used to fold a uniaxial base
from any convex polygon of paper, where the vertices
and edges of the polygon correspond to the leaves on,
and the structure of, the shadow tree, respectively.

These universal molecules are constructed as cross-
sections of the polygon as it undergoes a constant
shrinking process, where all the edges are kept parallel
to the original edges. Higher dimensions in the uni-
axial base, moving up from the shadow tree,
correspond to increasingly reduced polygons.
Simultaneously, the shadow tree is shrinking inwards
to reflect the height of the leaves approaching the top
of the uniaxial base. Tracking the trajectories of the
original polygons’ vertices provides the core creases of
the crease pattern used to fold the desired uniaxial
base, and they must all be mountain folds. Further
detailed steps are necessary to complete the crease
pattern design and guarantee that the base is
achievable.

Rigidity theory

Understanding how linkages fold and unfold involves
rigidity, a key concept in origami engineering. A link-
age can be represented by a graph consisting of ver-
tices and edges. A configuration is a linkage that
includes coordinates for the vertices that satisfy each
edge length. When a linkage folds or moves, it reaches
many configurations and the complete set defines
the configuration space. A linkage configuration is
‘flexible’ if it can move from some initial configuration
in a non-trivial way (i.e. a motion that is not just
a translation or rotation); otherwise it is ‘rigid’.
A planar truss is an example of a rigid linkage
configuration. Testing rigidity of a given linkage
configuration is a co-NP hard problem. For this
reason, several assumptions and simplifications are
made. There are mathematical constructions available
to classify linkages as generically and minimally gen-
erically rigid. Useful applications are based on these
studies, such as algorithms for building rigid linkage
structures with the smallest number of links.

Combining the ideas of rigidity and linkages allows
locked linkages to be mathematically defined as having
a disconnected configuration space.1 Linkages can be
configured as either a chain or a tree. A chain is essen-
tially a set of edges with a vertex and at least one other
edge connected to it at each endpoint. A tree is a set of
edges that can have branches of edges that end with-
out reconnecting back into the inner set. 2D chains
can never be locked, while trees can. On the other
hand, all 3D chains and trees can be locked.1 An
unlocked configuration can be folded to any other
configuration.

The study of slender adornments on folding struc-
tures is another important concept used to transition
from theory to engineering applications. Linkage
chains and trees consisting of just edges have been
analyzed for unfolding and locking, but additional
thicknesses or polygons have not been included.
Slender adornments are arbitrary thicknesses or poly-
gons that are attached to links in a chain or tree-like
configuration. Consider taking a standard linkage

Figure 3. Top: uniaxial base. Bottom: corresponding shadow

tree.
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chain and adding polygons on the chain instead of
just the edges. These polygons will still be hinged at
the vertices of the linkage configuration, but now
instead of being concerned about overlapping edges,
the non-crossing constraint becomes more difficult
because the polygons will have less room to move
before they intersect. Triangulating the polygons to
model them as linkage configurations allows the
same rules of rigidity and ideas of locked linkages to
be applied.

Unfolding, folding and creases

To unfold a cube (or any polyhedron) consider cut-
ting along the edges and then flattening the geometry
into a plane. The reverse is the folding process. These
ideas have many applications, for example folding any
3D shape out of a sheet of material requires knowing
what shape to cut out of the original plane, and the
necessary creases, so that it can be folded into the
desired form without inefficient overlaps. Edge
unfolding is a process where the cuts are only made
along the edges of a surface. This is desirable if no
visible seams can exist in the folded object. In general,
cuts can be made anywhere on the 3D surface. In both
cases, one piece of the sheet material with no over-
lapping regions is required. A non-convex polyhedron
cannot always be edge-unfolded because the 2D shell
often overlaps itself upon unfolding. General unfold-
ing is an open problem. Note that convex and non-
convex refer to the folded 3D form, not the unfolded
2D sheet. Figure 4 illustrates both cases of folding.
The upper cube is deconstructed using edge unfolding
and the bottom cube using a general unfolding
process where the cuts are not constrained to the
edges.

There are several methods used to achieve unfold-
ing of polyhedra. Edge unfolding for both convex and
non-convex polyhedra, vertex unfolding, orthogonal
polyhedra unfolding, and grid unfolding are all meth-
ods that have been explored.1 These ideas can be
applied in engineering contexts when the problem of
adding a finite thickness to the surface is addressed.
The problem involves folding 2D surfaces into a 3D
polyhedron. Exact coverage is desired, i.e. multiple
layers are not allowed.

Instead of cutting edges (as in unfolding) the idea
of gluing may be used to affix edges to one another
during folding. Given a gluing pattern of a 2D shape,
shortest paths can be determined before folding the
3D polyhedron. The shortest path on some surface
S between two points i and j is the shortest of all
curves connecting points i and j. Shortest paths
always exist, but are not necessarily unique, and
must exist as a straight line if the surface is unfolded
to a plane.1 A 2D polygon plus the gluings that bring
it together create metrics, which are the distances
points within a folded polyhedron are from one
another. The gluing of a polygon involves matching

equal-length subsections of the boundaries of a 2D
polygonal shape with one another in such a way
that, when connected or glued, they form a polyhe-
dron in three dimensions. The metric is determined by
the shortest paths between any two points and will be
convex if all points have zero or a positive curvature.
Additionally, the metric should be topologically a
sphere, that is to say that the gluing should be com-
plete (no edges left out) and free of overlaps, which
ensures no self-intersection of panels during folding.
This idea is shown in the simple folding of a cube in
Figure 5. Note the edges are paired together by their
colors, and the gluing pattern, indicated by the lines
connecting edges, does not overlap. The metric should
also be polyhedral, meaning only a finite number of
points have non-zero curvature. These properties,
when satisfied together, can be termed Alexandrov
gluings.

There are computer programs available that tell
us how to fold any polygon with this type of gluing
(see http://www3.math.tu-berlin.de/geometrie/ps/soft-
ware.shtml). However, there also exist polygons that
are ungluable. Additional algorithms exist for deter-
mining the number of possible gluings and methods
used to achieve smooth foldings and unfoldings.
These fairly abstract ideas have been applied to
packaging and coverage problems in engineering.
For example, determining the most efficient way
to cover a spherical ball of chocolate with an ini-
tially flat piece of tin foil, which can be modeled by
a polygon covering a polyhedron with minimal
overlap.13

The idea of fold and one cut is an origami design
tool that originated as a magic trick. Consider cutting
out a simple five-point star shape. Starting from a
square piece of paper, this shape would take 10 cuts
to produce. Now imagine folding that square piece of

Figure 4. Top: edge unfolding. Bottom: general unfolding.
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paper in such a way that one straight cut through the
folded paper would produce the star upon unfolding.
It has been proven that any planar graph, or shape
made up of only straight lines, can be produced by
this method, although some would take an unrealistic
number of creases to achieve.14 The basic method of
the fold-and-one-cut origami design is to line up all of
the edges of the desired figure onto one line that can
be cut. The Huzita–Hatori axioms provide the foun-
dation for these algorithms. This is a universal possi-
bility as any set of line segments on a piece of paper
can be aligned by flat-folding. Applications of these
algorithms are rooted in manufacturing.

Common crease patterns

The Miura-ori pattern, waterbomb base, Yoshimura
pattern, and diagonal pattern are all common rigid-
foldable crease patterns.15 Figure 6 shows these four
crease patterns, which can be tessellated to form struc-
tures on any scale. The major features that distinguish
these designs are that the waterbomb base and Miura-
ori patterns can expand and contract in all directions,
the Yoshimura pattern is capable of translational
motion and the diagonal pattern allows for rotary
motion.

Miura-ori pattern

The Miura-ori pattern is auxetic, meaning it exhi-
bits a negative Poisson’s ratio (i.e., when the pattern
is stretched in one direction, the folded sheet
expands in the orthogonal, planar direction), flat
and rigid-foldability, and single-degree-of-freedom
actuation. It was invented for use in space solar
panels.16 Figure 7 (left) illustrates the folding
motion of a Miura-ori pattern. A variation of this
pattern uses trapezoids rather than parallelograms

and is used to create concave or convex structures,
which are useful in architectural applications. The
Miura-ori pattern has been extensively used in
engineering.

Waterbomb base

The waterbomb base has applications in smart mater-
ials and actuation due to its simple geometry and mul-
tiple phases of motion,17 and is commonly used as a
base for more complicated designs. The folded states
are shown in the center and right in Figure 7. It is
easily manufactured, has a transferable crease pattern,
is readily scalable, is rigid-foldable, can be expanded
for different designs, and can be actuated in three dif-
ference phases of motion.17 The waterbomb base is
also flat-foldable and when tessellated it creates an
axial contraction segment with a negative Poisson’s
ratio between the radial and axial directions.

Yoshimura pattern and diagonal pattern

The Yoshimura pattern is a tessellation of diamonds,
with either all mountain or all valley folds along diag-
onals. The curve of the sheet after folding, which
yields the radius of a cylinder or curve, depends on
the shape of the diamonds in the pattern. A hexagonal
variation of this crease pattern is also possible if add-
itional folds are made along the diagonals of the dia-
monds. The diagonal pattern is also common in
folding cylinders. However, instead of contracting
in a translational manner, it rotates as it collapses.15

It was first observed as the natural reaction when tor-
sion was applied to a cylinder.18 The crease pattern
is made up of parallelograms that are folded in one
direction along their diagonals and in the opposite
direction along their parallels. The valley folds of a
Yoshimura pattern form a planar polygonal line,

Figure 5. Polygon to fold a cube with gluing and metrics

shown.

Figure 6. Common origami crease patterns, where the

dashed and solid lines indicate mountain and valley folds,

respectively (a) waterbomb base, (b) Miura-ori pattern,

(c) Yoshimura pattern, and (d) diagonal pattern.
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while the valley folds of a diamond pattern form a
helical polygonal line.19

Mechanical engineering applications
of origami

This section outlines the major applications of ori-
gami in mechanical engineering. While there is not a
complete disconnect between the theory and applica-
tions, the dependency of applications on the theory is
not as extensive as it is in more mature mechanical
engineering disciplines. Where appropriate we point
out the connections and at the very end of this section
we provide an overview of the relationship between
the theory and applications.

Applying origami to engineering

Paper, which is assumed to be two dimensions in most
mathematical studies, is not the material that is used
in the vast majority of engineering applications.
However, it is important to study and understand
how paper folds between creases in origami in order
to extrapolate these results to materials that are used
in engineering. Earlier, it was assumed that the faces
of the paper stayed straight during folding. However,
this is not necessarily true because paper is flexible.

To explain how the surface folds, define Gaussian
curvature as the product of the minimum and the
maximum curvature at any one point on a 3D surface.
It is negative for saddles, positive for convex cones,
and zero for intrinsically flat surfaces. The total
Gaussian curvature never changes during folding.
Folding a piece of paper will always result in a form
with zero curvature and the minimum curvature will
locally be zero at every point. This explains how slices
of pizza are most effectively handled by depressing the
middle of the crust to give some curvature to the slice
and supporting the length of the pizza, which is now
restricted from folding.

One major challenge in the transition from theor-
etical origami to engineering is the addition of some
finite thickness in the materials. In the majority of

mathematical results that have been developed,
2D surfaces, with zero thickness, are assumed.
Several methods for adding thickness have been pro-
posed and they all involve some adjustment at the
hinges, or creases. Essentially, the edges in any folding
design can be hinged together at valley creases. The
main problem is when there are several fold lines at
one vertex. There can no longer be concurrent edges
and the edges become over-constrained. There are
ways to use symmetry at each vertex and achieve a
workable design. There are also slidable hinges that
allow edges to slide along the faces of connecting
panels.

One way to solve the over-constrained issue,
instead of moving the hinges to valley folds, is to
trim the volume of the edges on the valley sides.
This allows the vertex to flex in a way that the edge
does not intersect itself. Figure 8 shows examples of
these methods. Another hurdle in many origami
engineering applications is the cost and the time
spent folding, which presents a barrier to applications
where folding may be introduced. Additionally, dur-
ability must be achieved as engineering applications
will likely require repeated folding and unfolding. The
following are some principal areas of mechanical
engineering applications of origami.

Delivery, packaging and storage

Folding can be used to improve the performance of
devices that operate in a limited space. For this
reason, devices in this area generally exist in either a
folded or unfolded state, and do not display final
motion in either orientation.

Packaging. Most engineering applications make use of
materials that are less flexible than paper and are
approximated as rigid. Mathematical solutions can
be implemented in many different engineering appli-
cations. Packaging for consumer goods provides a
widespread example of rigid origami, including auto-
mated packaging folding processes and designing the
most efficient packaging.

Figure 7. Left: Miura-ori pattern. Center and right: waterbomb base in two stable equilibrium positions.
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One recent example of origami in manufacturing
packaging is flat-folding rigid shopping bags.20

The solution allows the bottom of the carton to
remain rigid and can be applied to shoppings bags
with various dimension ratios and thicknesses. The
new crease pattern is a variation of a traditional pat-
tern used for folding bags, but the upper and lower
portions are separated with a horizontal crease
around the bag. It is relatively easy to show that the
lower portion, including the base, is rigid-foldable. To
achieve a working design, the bag is split into four
identical sections, centered at each corner, and only
one section is analyzed due to symmetry. The vector-
based approach ensures the bag is rigid-foldable by
proving each panel in the structure remains planar
and connected to neighboring panels throughout the
entire folding motion. The only design variable is the
choice of an angle that dictates a crease on the side of
the bag from the horizontal. This variable has max-
imum and minimum allowable values, determined by
the ratio of the height relative to the depth of the
entire bag. The only other restriction in the design is
providing sufficient width to the bag to ensure that the
top corners of the bag do not intersect during the
folding motion. Due to the highly non-linear nature
of the conditions leading to rigid-foldability, solutions
are found numerically.

Another analysis of carton packages focuses on the
tuck-in operation that is commonly used to secure a
lid.21 An equivalent mechanism to a carton appears
here, where the creases are joints and the panels are
links. The stiffness of the links is important because
the tuck-in operation is not possible with a single rigid
link. To achieve a design with rigid links, the carton
lid is decomposed into an equivalent three-link mech-
anism that allows the flap to be tucked in. The three
smaller links can be considered rigid and the corres-
ponding kinematic equations are derived that allow
the flap to be guided into the slot. The angular pos-
ition of the end of the flap is determined and the
necessary torque to drive this mechanism can be
found. A robotic manipulation device is then pro-
posed to carry out the tuck-in of the carton flap.
Motors are chosen for this task to allow the tuck-in

operation to be completed within 1–2 s, allowing
the machine to compete in the packaging market.
An inverse kinematics approach is used to analyze
the trajectories in this complicated packaging
problem.

Shipping containers. The transportation of empty con-
tainers is inevitable in the shipping industry, and sev-
eral attempts have been made to manufacture foldable
shipping containers.22,23 This can be formulated as an
origami engineering problem. Simplicity and dur-
ability in unfolding and folding of the containers is
a must and lightweight materials should be used to
keep the tare weight down. Although actuation for
folding is commonly used in engineering origami,
manual unfolding and folding may be more appropri-
ate in this case to reduce costs and to retain the
robustness of the design. A similar crease pattern
as used in the rigid and flat-folding shopping bag
may be helpful in this application, given the robust-
ness of that solution to various dimension ratios.20 So
far two major foldable containers have been intro-
duced into the market,22 but neither were commer-
cially successful as they had higher tare weights and
were significantly more expensive than the standard
containers. The search for a foldable container
continues.

Optics. Origami has been used to determine the most
effective way of ‘folding’ long-focal-length optics into
small spaces, a field of study called optigami.24 The
general idea is to reflect light, using mirrors, many
times to create high-resolution, large-aperture cam-
eras with reduced thicknesses.25 This approach
reduces the size and weight of imaging devices cur-
rently in use, which finds application in surveillance,
telescopes, and cell phones for example. Studies are
available on nanoscale origami used for 3D optics,26

and on photo-origami-bending and folding polymers
to program optical fields into materials.27 Another
application of optigami is the Foldscope, which is a
flat microscope that can be used to achieve 2000�
magnification and submicron resolution.28 This
device can be assembled in about 10min from a flat

Figure 8. Volume trimming in thick origami.1
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sheet of paper and several other small components
and results in an optical microscope costing less
than US$1.

Space. Rigid origami has for a long time been applied
in space to the deployment of solid solar panels29 and
inflatable booms for deployable space structures.30

A benefit of rigid origami is its scalability and
single-degree-of-freedom actuation. Origami fold
patters have inspired mechanical linkages that
exploit the motion of a single vertex and extend this
kinematic behavior to a patterned system of vertices,
resulting in a mechanism that exhibits single-
degree-of-freedom motion. The Miura-ori pattern
(Section 3.1) was first introduced for the deployment
of solid solar panels in space and continues to be
used.31 Figure 7 shows the folding pattern in three
folding positions. This pattern is ideal for folding
solar panels because it satisfies the constraints of
rigid and flat foldability.

Biomedical devices. Biomedical applications represent
a growing area of interest in origami engineering
devices designed for delivery in constrained
spaces. To date, 3D biomedical structures such as
encapsulants, particles, scaffolds, bioartifical
organs, drug delivery devices32 and minimally inva-
sive surgical tools have been explored.33 New self-
assembly techniques, actuated by heating or a
chemical stimulus, are being used to complement
existing 3D tissue fabrication and patterning meth-
ods. Self-folding can occur in hingeless 2D planar
structures, resulting in curved structures, and also
in hinged micro- and nanoscale structures that
result in 3D polyhedra. When temperature is used
to actuate folding, polymers can be used in the
planar materials, and the edges of the polymer
will fuse together after self-folding, creating a mech-
anically robust device.

Surgical devices can benefit from self-folding and
tetherless tools that allow greater access to hard-
to-reach areas within the human body and truly
non-invasive surgery. Origami-inspired forceps have
been developed based on spherical kinematic config-
urations of origami models, and the use of shape-
memory alloys (SMAs) will promote research in
this application. A new design for a stent graft has
been inspired by origami and can be deployed in a
blocked or weakened artery or intestine, where it is
unfolded to unblock the area in a minimally invasive
way.34 The SMA is deployed when exposed to body
temperature. It also includes an integrated enclosure
that prevents restenosis, which is the blocking of a
stent by subsequent tissue ingrowth through open-
ings in the meshes. A common triangular mesh fold-
ing pattern is used to create a cylindrical structure
that folds down, both laterally and in diameter, and
then can be deployed and re-opened once in position.
Figure 9 shows the crease pattern of the origami

stent, which is a tessellation of the waterbomb base
(Section 3.2) and is connected at opposite edges to
form a cylinder.

Other storage applications. Several other applications of
origami in storage and delivery must be mentioned.
Automobile airbag design involves folding an airbag
into a compact state that allows it to be rapidly
unfolded in milliseconds. The 3D shape of the
airbag is critical in the effectiveness of the device,
and concepts from rigid origami and flat foldability
are used to design the creases that flatten the airbag.
Classic origami geometries are being used to create
antennas and other electronics designed to collapse
down to small sizes. Several designs, following from
the accordion or pleat fold bases or variations of the
Yoshimura pattern (Section 3.3) for collapsible
cylinders, have been developed.35,36 The frequency
of each antenna can be tuned based on its height,
providing a device that can be stored in a pocket
and then easily deployed for long-distance communi-
cation needs.

An origami-inspired kayak can be manually
unfolded from a 3200 � 1300 � 2800 box to a 120

long� 2500 wide fully deployed vessel in just a few
minutes.37 Rigid origami concepts and the Miura-ori
pattern (Section 3.1) have also been used to design
lithium-ion batteries that fold, bend, and twist to pro-
vide deformable energy storage devices.38

Applications of this technology include flexible dis-
plays,39–41 stretchable circuits,42 hemispherical elec-
tronic eyes,43 epidermal electronics,44 and conductive
textiles.45

Manufacturing

Origami has been the inspiration for many applica-
tions within mechanisms used in manufacturing.
Fundamental origami concepts have been used to
study kinematics of mechanisms, simplified process-
ing, automated folding, and optimized self-folding.
This section outlines applications of origami in mech-
anical engineering related to these subjects. Generally,
devices for this type of application exhibit some final

Figure 9. Origami stent crease pattern.
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motion in their folded and/or unfolded state and thus
can be classified as action origami. This is a unique
characteristic as compared to applications categorized
in Section 4.2, which are generally designed to fold
and unfold into static states.

Self-folding and self-assembly. It is common for engineer-
ing systems to require complex and time-consuming
manufacturing processes and deployment methods.
However, nature provides many examples of
self-folding structures that can be quickly fabricated
and assembled, which have inspired novel engineering
methods. Self-folding ‘‘automates the construction of
arbitrarily complex geometries at arbitrarily large or
small scales’’,46 and, by doing so, can provide innova-
tive solutions allowing for faster manufacturing pro-
cesses, reduced material usage, reduced part count,
and improved strength-to-weight ratios.

A variety of self-folding mechanisms have been
explored to date. A highly referenced systematic
study of self-folding, without any direct mention of
origami has been compiled.47 Examples of self-folding
origami engineering include mesoscale structures that
fold when actuated by lasers and magnetic fields,48,49

pop-up mechanisms that use micro-electromechanical
systems techniques,50,51 SMAs that actuate self-fold-
ing sheets of programmable matter,52 single-use shape
memory polymers (SMPs) that self-fold into target
structures using selective light absorption with pat-
terned inks,53,54 and self-folding robots and structures
that rely on SMPs with resistive heaters.46,55–58

A methodology has been developed to coax thin mem-
branes into collapsing into 3D forms on microscopic
and smaller scales.59 Using a triangular network of
creases, a thin membrane can achieve a variety of
desirable forms that include flat sheets, partially
crumpled or collapsed into a compact state.
A Brownian motion simulation is used to analyze
the dynamic collapse of a membrane, which employs
the same crease pattern as the origami stent.34

Robotics for origami. Manufacturing origami-inspired
products requires robots capable of bending and fold-
ing materials. Mathematical models and origami con-
cepts are largely applied to linkages and mechanisms,
which are directly used in robotics. Though this is an
essential part of the application of origami to mech-
anical engineering, we will not devote much space to it
here because robotics and its applications have been
extensively considered elsewhere in the literature.
Manipulating paper to fold traditional origami exem-
plifies many of the current challenges faced in dex-
trous manipulation and flexible object manipulation
in the field of robotics today. For this reason, robots
that fold traditional paper origami have been used to
uncover and explore the difficulties associated with
the manipulation, modeling, and design of foldable
structures.60

Origami has also inspired the design of a new class
of robotic systems specifically designed for new rapid
and scalable manufacturing processes. Building
sophisticated 3D mechanisms from a 2D base struc-
ture incorporates elaborate folding patterns that can
execute complex functions through the use of actuated
hinges or spring elements. An origami approach that
will significantly drive further advancement in print-
able robotics has been identified.15 Hardware limita-
tions are currently constraining the mobility,
manipulation capabilities, and manufacturing of
robots. Complications also arise in software as an
algorithm capable of manipulating the paper in the
correct sequence with the least number of steps is
desirable. By employing an origami approach, 3D
mechanisms capable of complex tasks can be printed
on 2D planar sheets and then subsequently folded
into some final state. This is a low-cost and extremely
fast method for designing and fabricating new robots
with expanded capabilities. An additional benefit is
that these robots have the potential to be folded
back down to a planar state for storage and
transportation.15

Mechanisms. Studying mechanisms is an area of inter-
est in mathematical origami. Again, we will have little
to say about this because of the extensive literature
that currently exists on the subject. Origami can be
directly modeled as a compliant mechanism, where
the creases act on pin joints and allow motion.61,62

Lamina emergent mechanisms (LEMs) are a subset
that have an initial flat state and motion emerging
out of the fabrication plane, which is analogous to
folding origami from a flat sheet of paper. The
pseudo-rigid-body model (PRBM) is a model repre-
senting compliant mechanisms as rigid-link mechan-
isms with torsional springs at their revolute joints.61

Graph theory offers a common ground between mech-
anisms and origami as the two can be abstracted to a
common graph.2 This allows mechanisms and origami
to be understood and analyzed using similar conven-
tions and mathematical techniques.

Spherical mechanisms are often used to study kine-
matic origami models. The motion of the origami
model is traced down the folds to the center of each
spherical mechanism. In this way, a vertex in origami
is equivalent to the sphere center of a spherical mech-
anism.60,63,64 Once the vertex is located, the folds that
are in motion can be identified and these folds map to
links in the corresponding spherical mechanism.
In most origami models, artistic features disguise the
underlying mechanisms. However, graph theory and
simplified origami models have been made to classify
the types of spherical mechanisms used today in
action origami. The classification scheme is purpose-
fully generalized—neglecting the number of links, link
lengths, link shapes, and internal angles–to allow for
flexibility so that the same fundamental mechanisms
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can be applied to provide motion for very different
models.3

Pop-up mechanisms. Pop-up mechanisms offer an inter-
esting area of study relating mechanisms to origami.
They deviate from the traditional rules of origami and
even those of kirigami, by allowing cuts and the use of
glue to attach more than one piece of paper together
in a design. However, they do exhibit the concepts of
flat-foldability, making them very interesting and
useful to study. Commonly seen in children’s books,
pop-up mechanisms involve a 3D structure self-erect-
ing by the action of opening one crease. Several prin-
ciples involved in designing pop-up mechanisms have
been studied with the intent of closing the gap
between art and engineering applications. Further
understanding of the kinematic principles at play in
these complex mechanisms provide insight into poten-
tial applications beyond paper engineering, such as
airbag folding, sheet metal forming, protein folding,
packaging, and other single-degree-of-freedom
applications.65

Industrial origami. Origami-structured industrial prod-
ucts start from a flat sheet of material and then are
folded into some final shape. This method offers a low
manufacturing cost and provides advantages such as
rigidity in the folded state and flat-foldability for stor-
age and transportation. The folding process also
introduces strength in the material. One application
that has been explored is manufacturing sheet metal
such that it can be folded to create the frame of con-
sumer appliances66. This study analyzes the material
properties and forming process required to create
large-scale metal products in industrial applications.

Electrical devices. Print and self-fold electrical devices
on the millimeter scale have been created using a poly-
ester film coated on one side with isotropic aluminum
(a metalized polyester film, MPF). When globally
heated, the internal stress due to the contraction in
the sheet is transformed into a folding torque.67 The
2D film is folded into 3D electric devices; specifically a
resistor, a capacitor, and an inductor. Particular
resistances can be attained by varying the material’s

geometry, which is achieved through folding different
lengths of the MPF. Electrically isolating two MPFs
results in a capacitor, and the capacitance can be con-
trolled through folding by altering the surface area
and spacing between plates. An inductor in the form
of a coil can be used as an actuation mechanism,
where the inductance is determined by the number
of coils and the coil geometry, which can be controlled
through folding. Specifically designed folding patterns
were defined by laser machining to manufacture the
MPFs necessary to fold into these components.

Dielectric elastomers (DEs) exhibit favorable
material properties for folding and unfolding and,
for that reason, have been used to actuate origami
structures.68 DEs are low-modulus electroactive poly-
mers that use an electric stimulation to cause a
Maxwell stress that drives a lightweight polymer, gen-
erating mechanical motion. DEs have high specific
elastic energy density, large strain response, fast
response time, high actuation stress, and high electro-
mechanical coupling efficiency.69,70

Structures

The following are some applications of origami that
appear in mechanical engineering structures.

Deployable structures. Several origami concepts, such as
flat-foldability and single-degree-of-freedom actu-
ation, find applications in the design of deployable
structures. Some of these applications use a cylin-
drical shell that collapses into a 2D plane under tor-
sional loading, which naturally creates the diagonal
pattern (Section 3.3) shown in Figure 6 and discussed
previously in this review. Figure 10 is a series of
images displaying the folding motion of the diagonal
pattern. Experiments show that the analysis is
inaccurate for shorter cylinders where the boundary
conditions, either assumed to be simply supported or
clamped, interfere with the buckling pattern.18 In add-
ition, membrane compression is maximized at some
oblique angle to the axial direction. Optimization
of the truss design for folding and unfolding with
minimal energy input for more versatile deploy-
able structure applications remains to be done.

Figure 10. Foldable cylinder based on twist buckling.
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Biomimicking has also inspired the design of deploy-
able structures.71,72

Tree leaves were the inspiration behind deployable
membranes. Leaves have biologically evolved with a
balance of flexibility and rigidity, which allows them
to fold in the wind to decrease drag and damage,
while simultaneously being strong enough to support
their own weight along with occasional other loads.
Veins and midribs in leaves act as stiffening members,
or links, supporting flexible membrane panels. The
geometric study of tree leaves, including relating the
folding pattern to the Miura-ori pattern (Section 3.1),
has been carried out.73 As defined in the study, a leaf-
out pattern is one in which the ‘leaves’ are directed
away from the center of the polygon and vice versa for
the leaf-in, as shown in Figure 11. Variations and
combinations of several known leaf patterns are
explored in order to produce deployable structures,
which include solar panels, antennas, solar sails, fold-
ing tents, and roof structures.74

Deployable shelters, used primarily for disaster
relief and military operational bases, represent
another origami-inspired application.75–77 The
key design features of these structures include light-
weight frames, high volume expansion ratios, and
rigid-foldability. Accordion or pleat crease patterns,
and variations thereof, have been used in previous
studies. More intricate crease patterns, with
more optimal folding behaviors, can be applied in
the future.

Two techniques are used to analyze the kinematics
of origami. The unstable truss model uses the config-
uration of vertices of the structure to constrain the
motion of the structure by preserving the length of
the links in between vertices and the diagonals of
the facets. This ensures that both the links and the
panels in the model are rigid. The second method is
the rotational hinges model, which uses the rotational
angles of edges to represent the structure. To con-
strain the motion, this model forces closed loops

to remain intact during the folding motion.78

A mathematical approach to the rotational hinges
model using rotational matrices has been proposed.79

The structural configuration is represented by the
folding angles contained along some closed strip of
facets in the model that remain connected during
the folding motion.

Architecture. There are several advantages to a rigid-
foldable origami design in architectural applications.
These include: (a) a watertight, continuous surface is
ideal for constructing an envelope of any space, roof,
or facade; (b) a rigid origami model offers a purely
geometric mechanism that can be realized at any scale
because it does not rely on the elasticity of the mater-
ials and is not significantly hindered by gravity; and
(c) the transformation of rigid origami from an
unfolded state to a final configuration is controlled
by a smaller number of degrees of freedom, which
enables semi-automatic deployment.78

Applying rigid origami to designs in architecture,
the geometry in kinetic motion is analyzed to discover
generalized methods through which additional rigid
origami designs can be created and existing designs
can be modified. Studies using the Miura-ori pattern
(Section 3.1) have been made.4,80,81 Using common
rigid origami patterns, two basic approaches to
achieve rigid-foldability have been proposed. One
approach is based on triangulated patterns where
the degree of freedom is determined by the number
of elements on the boundary. Another involves quad-
rilateral patterns that provide single-degree-of-free-
dom motion. The latter has been employed to
demonstrate an architectural application of rigid ori-
gami for the design of a foldable hallway connecting
two offset and uniquely sized openings between build-
ings.78 The design begins from a known regular quad-
rilateral origami pattern, which is modified to satisfy
several constraints through optimization using the
Newton–Raphson method. In the end, a variational

Figure 11. Leaf patterns. Left: leaf-out. Right: leaf-in.
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design is found and a method for thickening the
panels for manufacturing is proposed.

X-Ray machine shroud. Origami-adapted structures
have been devised to cover the non-sterile extension
C-arm of an X-ray machine in an operating room.
Plastic drapes have traditionally been used, but they
were not durable and had to be replaced every time
the movable device entered and exited the sterile field.
To achieve a sturdy design that met the sterilization
needs but did not limit the movement and position of
the arm, an origami-based design was implemented.82

The design uses a slightly modified version of the
Miura-ori pattern (Section 3.1) to account for the
contours of the arm. Essentially, the shroud design
covers the entire arm, creating a barrier, while it
rotates in and out of the sterile field. This approach
saves time and money associated with repositioning
the machine.

Energy absorption. Compliant mechanisms modeled by
origami have inspired several designs for energy
absorption and impact force distribution. The
Miura-ori folding pattern again finds utility in
energy dissipation through crushing or plastically
deforming its shape. This is due to its single-
degree-of-freedom motion paired with a negative
Poisson’s ratio.83 This unique mechanical property is
helpful in absorbing energy in the deformation of the
folds and distributing an impact force throughout a
structure.84 Compliant mechanisms are used to ana-
lyze paper origami and origami-adapted engineering
designs, and the best have been shown to have a high
yield-stress-to-elastic-modulus ratio.

Another origami pattern used in energy absorp-
tion, as well as deployable and foldable structures, is
the Tachi–Miura polyhedron (TMP) bellows, which is
a rigid-foldable, approximately cylindrical structure
composed of two modified Miura-ori rectangular
sheets attached at the two longer edges. In an analyt-
ical model,85 the flat facets of the TMP remain flat
during the folding motion and all deformation occurs
strictly along the crease lines, so the mechanical work
done by the external force can be equated to the bend-
ing energy along the crease lines, with some energy
dissipation.

Sandwich core structures. Sandwich core patterns are
used in many structures, including aircraft and wind
turbines, to increase strength-to-weight ratios.
Conventional methods include hexagonal honey-
combs, but these designs possess positive Poisson’s
ratios, which result in the structure bending into a
saddle-shaped curve when stressed in one plane.
Foldcores are origami structural sandwich
cores created by folding a planar base into a stronger
3D structure. A design has been suggested
that exploits the advantageous properties of honey-
comb cores while avoiding the disadvantages of

humidity accumulation.86 The foldcore is fabricated
by carving or stamping the creases onto a sheet mater-
ial and folding along these edges. A zig-zag pattern
has been used to create a core and aramid paper has
been tested and simulated as a base material to deter-
mine its mechanical properties and performance while
folding.86

Kirigami has inspired a new graded conventional
or auxetic honeycomb core with higher density-aver-
aged properties, including compressive modulus and
strength.6 To produce complex geometries capable of
achieving an auxetic honeycomb core, kirigami has
been used to create a cellular tessellation with
improved performance over traditional honeycomb
cores. Similarly, a lattice auxetic pyramidal core has
been developed.87

Graphene folding. Graphene is an engineering material
composed of a single layer of carbon atoms bonded in
a repeating hexagonal pattern. The material is so thin
that it can be approximated as 2D and can easily fold
when subjected to external stimuli. It is also extremely
strong and conducts heat and electricity with great
efficiency. Studies have explored the folding behavior
of mono- and multi-layer graphene sheets.88

The introduction of other shapes into the hexagonal
network, including pentagons and hexagons, can
influence the way a graphene sheet folds and the 3D
forms it can achieve, which directly influence its
material properties.

This research provides a starting point for graphene
origami which can be used to engineer carbon nano-
tubes, cones, graphene wraps, and other structures
that exploit the many favorable characteristics of gra-
phene at small scales. Programmable graphene ori-
gami is of interest and is used to create nanoscale
building blocks. A self-folded tri-layer graphene spe-
cimen was analyzed using a non-linear continuum
mechanics model based on beam theory along with
molecular dynamics simulations.

Curved-crease origami. Traditional origami, and virtu-
ally all engineering origami, is concerned with straight
line creases. Several aesthetic and purely mathemat-
ical explorations of curved-crease structures exist and
the geometric mechanics of these structures have been
explored.89 To form a foundation for advanced ana-
lyses of curved crease structures, which may provide
advantageous structural properties in some applica-
tions, a simple example of curved-crease origami con-
sisting of a circular strip with a single crease along its
center has been folded to form a 3D buckled struc-
ture. The angle of the fold, radius of the circle and
properties of the paper are used to quantify the shape
and analyze the folded structure.

It has been shown that a cut annulus with a con-
centric, circular crease remains flat after folding, while
the same crease in an uncut, complete circular annulus
forces the form to fold into a saddle due to the
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elasticity of the sheet and the in-plane stresses created
by the crease. In either case, the folded state is driven
by minimizing the total elastic energy from the sheet
and the fold, which are derived and expressed in terms
of the curvature of the paper and the torsion within
the crease. The paper is treated as a developable sur-
face, which restricts stretching between the creases
and in this way models rigid origami. A triangular
mesh model for the curved structure, where each
edge was treated as a linear spring, was used to min-
imize the energy of the system using a direct numerical
approach. The study continues to define geometric
constraints associated with the maximum dihedral
angle of the fold relative to the curvature and torsion.
A more advanced study involving a series of concen-
tric curved folds (an example of pleat folding due to
the altering mountain–valley pattern) has furthered
the structural understanding of curved-crease ori-
gami.90 In this case, the resulting shapes include a
saddle shape, similar to the case of a single crease,
as well as a helical form.

Additional applications

The above three application spaces encompass the
majority of current research in origami related to
mechanical engineering. Another origami applica-
tion that does not fit easily in the previous sections
is the use of mathematical origami in computer
graphics to enhance the rate at which data is sent
through a computer in animation.91 In tunable meta-
materials origami is used to adjust the spacing
between a series of split-ring resonators placed on a

folded surface, resulting in a range of resonance
frequencies.92

Applications summary

As is clear from the length of this section, the appli-
cations of origami in mechanical engineering
are diverse, interesting and important. Figure 12
illustrates the relationship among the origami proper-
ties such as flat-foldability, the folding patterns and
the applications which make use of them.

Origami-based design procedures

Now that a broad overview of origami applications in
engineering has been presented, the advantages and
usefulness of origami-based design becomes more
clear. There are four basic properties that must be
considered in converting a crease pattern into a func-
tional engineering design.93

1. Rigid-foldability is a property of a crease pattern.
If the crease pattern is proved to be rigid-foldable,
then crease characterization (step 2) can occur.
If not, several secondary creases must be added
or boundary material must be removed to allow
for rigid-foldability. Non-rigid designs are analo-
gous to over-constrained structures. By adding
additional joints, the number of degrees of free-
dom in the design can be increased to allow the
crease pattern to be rigid-foldable.

2. The surface need to be classified as uninterrupted
continuous and the creases must be characterized

Figure 12. Relationship among fold properties, fold types and applications.
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by the degree to which strain energy storage is
desired. An uninterrupted continuous surface is a
closed surface without holes. If this is a desirable
characteristic in the application, then scoring,
etching, heating, or mechanical folds can be used
to create the creases. If no constraint for
an uninterrupted continuous surface exists, then
perforations can also be used.

3. Strain energy, stored elastically in the creases, is the
next factor. Depending on the design constraints,
differing amounts of strain energy storage are desir-
able. Heavier perforations or deeper scoring are
methods used to modify the cross-sectional area
at the creases and raise the crease hinge index,
improving the hinge behavior. If more strain
energy storage is desired, then a lower hinge index
material, which includes polymers and metals, can
be used. The material properties and dimensions
dictate the strain energy capacity and relate to the
crease characterization. The material choices affect
the rigidity of the panels and the deflection at the
creases. The appropriate stiffness or compliance,
depending on the application, can be designed by
setting the correct thickness of each of these parts.
Accommodating the thickness is another consid-
eration. Material selection is not limited to
monolithic materials because composites and sand-
wiched membranes have been used.29

4. Once the material is chosen, the manufacturing
method is the last step in the design. Creating
creases in the material is a challenge, and com-
puter numeric controlled (CNC) methods likely
offer the most flexibility at this time. Several
CNC methods have been discussed,93 including
plasma cutting, abrasive water jet cutting, laser
cutting, incremental sheet forming, and nibbling.
Folding the final product can be achieved using
various methods, and automated folding, using a
robotics approach, has been considered.60

Another origami design procedure has been pro-
posed but focuses on kinetogami,94 which allows
cuts, as in kirigami, but also relies on folded hinges
that exist across basic structural units (BSUs). BSUs
are structural polyhedral links with empty volumes
that are modeled as rigid bodies and used as building
blocks to create 3D forms. The design procedure,
which allows for manufacturing 2D sheets that can
continuously fold into 3D forms, involves:

1. designing a set of basic BSUs formed from tetra-
hedral, cubic, prismatic, and pyramidal
components;

2. synthesizing each BSU’s crease and cut pattern to
create a single 2D pattern;

3. altering the design parameters to provide
reconfigurability;

4. extending one BSU unfolded pattern along a
linear path on a sheet, and folding each pattern

into a string, which is adopted based on previous
research, proving that linear chains of polygonal
models can be folded into arbitrary 3D shapes;

5. threading the string through the correct Eulerian
cycle to allow for folding and reconfigurability;
and

6. closing each individual loop and attaching all
compound joints.

The results of this study provide the foundation for
future applications where the kinematic performance
of reconfigurable polyhedral mechanisms can be
exploited.

Available software

There are several software packages currently avail-
able for use in the design of origami and origami-
inspired devices. A suite of functions written in
MATLAB� has been made available to assist in the
design of rigid origami structures. This toolbox allows
the analysis of Miura-ori (Section 3.1) variations,
which are currently the most commonly used crease
patterns in engineering applications. TreeMaker
allows users to generate crease patterns to create vir-
tually any origami base. Similarly, Origamizer is a
software that generates the necessary crease pattern
to fold any polyhedron. A design software called
Freeform Origami allows crease patterns of a model
to be altered and various features of a model, includ-
ing flat-foldability and developability, to be main-
tained. Rigid Origami Simulator can replicate rigid
origami designs given crease patterns as inputs.

A computational origami program called Eos, or
E-origami system has formalized a method for con-
structing origami models by defining a set of faces
and the corresponding fold lines and, although it
is capable of mathematical origami folding, it
is preferred in artistic origami at this time.
Mathematica� also has software packages available
that can simulate paper folding and several CAD pro-
grams, including SolidWorks�, have the option to use
sheet metal as a material, which can be used to test
and analyze rigid origami designs.

Conclusions

Origami is an art form that is currently finding many
engineering applications. This survey describes the
main applications of origami in mechanical engineer-
ing. Though it is as yet rare for origami mathematics
to be directly applied in engineering, the recent expan-
sion of the field has led to algorithms that can be used
to define the limits of folding and unfolding, and pro-
vide the basis for foundational concepts such as rigid-
foldability. Applications have been explored in areas
such as aerospace, biomedical devices, packaging,
storage, manufacturing, robotics, mechanisms, self-
folding devices, core structures, and architecture.
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Ongoing research in origami engineering is improving
folding efficiency in many engineering operations and
recent innovations are expanding the future capabil-
ities and usefulness of these devices.

In order for the results of research in this area to
be successfully implemented in applications, some
progress is needed in the basic sciences. Among
these are: (a) improving understanding of folding
algorithms to fold increasingly intricate 3D structures
in practice; (b) increasing the mechanical efficiency of
folding to achieve cost-effective solutions; (c) deter-
mining procedures to modify existing and design
entirely new crease patterns that allow folding in
more effective ways; and (d) formalizing design
approaches and methodologies in origami engineer-
ing. It is the authors’ hope that the present review
will encourage and inspire future origami-based
mechanical engineering applications and designs.
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