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Chapter 13
A Montessori-Inspired Career in Mathematics 
Curriculum Development: GeoGebra, 
Writing-to-Learn, Flipped Learning

Kathy A. Tomlinson

Abstract With an overview of Montessori education, I set the stage for curriculum 
materials aimed at improving undergraduate mathematics education. I describe four 
ways to enhance student learning with the dynamical mathematics software 
GeoGebra: classroom demonstrations, student activities with instructor-created 
applets, student activities with applets that students create by following podcast 
instructions, and student-created applets that more advanced students generate inde-
pendently to solve problems. I discuss two types of writing-to-learn assignments: 
guided reflection and journaling. I also describe collaborative classroom activities, 
including associated video lessons that I constructed to implement a flipped or 
blended learning environment. Connections are made between current mathematics 
education research findings, Montessori principles and the curriculum materials that 
I designed. The chapter closes with a reflection on my career path. I discuss my pas-
sion for mathematics and social justice, how this led to professional opportunities in 
mathematics education including a project in the scholarship of teaching and learn-
ing, and how my work in mathematics education is useful as I assume leadership as 
chair of my department.
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13.1  Introduction

In a career that is inspired by Maria Montessori’s ideas, I design and implement 
mathematics curriculum materials that attempt to respond to current mathematics 
education research. Most of my work seeks to improve instruction in mathematics 
courses taken by Science, Technology, Engineering and Mathematics (STEM) 
majors including calculus, differential equations, linear algebra, mathematical mod-
eling, complex variables and discrete mathematics.

As I develop mathematics curriculum I am guided by questions about how stu-
dents learn and what teaching methods and strategies work for them. How can we 
help students get a deep conceptual understanding through work with concrete ideas 
in a way that helps them move to greater abstraction? How can we get students to 
spend more productive time on task? How can we teach in ways that help students 
retain knowledge? How can we lower the number of students who withdraw from 
or fail our classes, while maintaining high learning expectations? How can we help 
students become engaged with and committed to mathematics?

These questions led me to three forms of curriculum work. The first uses the 
open source dynamical mathematics software GeoGebra. I have created four types 
of GeoGebra1 modules ranging in level of student involvement from the instructor 
demonstrating in class while students make observations and connections, to stu-
dents creating their own applets (small computer applications that demonstrate 
mathematical concepts), making decisions and discoveries along the way. The sec-
ond focuses on writing-to-learn assignments,2 encouraging students to reflect and 
engage with mathematical ideas at many levels. In my third form of curriculum 
work, I have implemented flipped or blended learning pedagogy, creating collabora-
tive classroom activities supported by video lessons.

13.2  Inspiration from Montessori Mathematics

13.2.1  Principles of Montessori Education

Since Montessori principles have had such a strong influence on the ways I think 
about teaching and learning, I will outline some key Montessori ideas. While 
Montessori education is designed for children ages birth through 18, I have found 
that some Montessori principles translate to the university setting. At the ele mentary 
level, Montessori education is characterized by its distinctive classroom environ-
ment, teacher role and cognitive goals.

1 I have created a GeoGebra Book for this chapter: https://www.geogebra.org/book/title/id/RdxKWn
2R?doneurl=https%3A%2 F%2Fwww.geogebra.org%2Fmaterial%2Fedit%2Fid%2FRdxKWn2R#
2 Sample writing assignments are available at https://www.uwrf.edu/MATH/SampleMathematics 
Activities.cfm
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The classroom space is a cross between a cozy living room and a science labora-
tory. There are open spaces where children spread out their work on rugs, small 
tables that seat between one and four children, and low shelves where children 
retrieve beautiful materials that they use in discovery style learning activities. The 
furniture is arranged to create attractive spaces for each part of the curriculum. 
Children spend three years in a single room, normally with the same instructor. This 
enables younger children to benefit from the influence of older children while older 
children gain leadership experience.

The role of the Montessori teacher is to prepare and organize the learning envi-
ronment, to provide brief lessons on how to complete learning activities, and above 
all, to skillfully observe children. Based on these observations, the teacher chooses 
lessons that capture the child’s attention and help each child to make progress at a 
pace that is appropriate for that child. Using carefully designed hands-on materials, 
the teacher gives lessons to small groups of children. The children then work auton-
omously, responsible to practice with the materials over time until mastery is 
achieved. The teacher serves as a critical link between the child and the prepared 
learning environment, facilitating the child’s construction of his or her own 
understanding.

Even the cognitive goals in Montessori education are distinctive. They include 
helping children become self-disciplined, caring, independent, self-motivated, com-
fortable with error, and able to focus for extended periods. These goals are less 
tangible than the usual academic content goals and very difficult to measure, espe-
cially in a public school setting. Yet giving greater emphasis to these goals often 
results in higher levels of academic success (Dohrman et al. 2007; Lillard and Else- 
Quest 2006). One way these goals are attained is through a three-hour uninterrupted 
work cycle in which children are free to choose what to work on and how much time 
to devote to it. This promotes problem-solving and concentration by encouraging 
children to choose challenging work, knowing they will have plenty of time to com-
plete it.

13.2.2  Montessori Principles and College Mathematics

How can these ideas about educating children find relevance in college-level math-
ematics instruction? While many Montessori practices are specific to the education 
of children, some of the principles behind the practices are applicable at the college 
level. Montessori recognizes an important connection between movement and cog-
nition. Materials are designed to be self-correcting. In a college classroom, I have 
found that hands-on activities using dynamic mathematics software provides stu-
dents a way to check their work by examining multiple representations. Montessori 
values choice and requires children to create their own mathematics exercises. I 
design mathematics curriculum materials that give students some choices about 
what mathematical objects to work with and require them to create some of their 
own exercises. By removing competition and grading systems, Montessori also 
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promotes within the child an intrinsic motivation to learn. Inspiring college mathe-
matics students to learn simply because the ideas are so beautiful, important and 
engaging is one of my greatest challenges. Perhaps the greatest gift of Montessori 
principles for college level mathematics instruction is its view on the progression 
from concrete to abstract.

As a mathematician, I think about concrete understandings versus abstract under-
standings in two ways. First, there is the idea of using specific concrete examples to 
motivate a general abstract principle. We can notice that 23 45+  is even, that 
237 841+  is even, and eventually conjecture and then prove, that the sum of any 
two odd numbers is even. Using pattern recognition to generalize provides one way 
to progress from the concrete to the abstract.

My second thought about concrete versus abstract relates to the idea of underly-
ing mathematical structure. Mathematicians observe the salient properties of a 
mathematical object and then generalize to a more abstract version of that object. 
For example, we notice that Euclidean distance between two points in the Cartesian 
plane is non-negative, symmetric, zero only when the points are identical, and satis-
fies a triangle inequality. Based on this observation, we define an abstract metric to 
be a real-valued function that has these same four properties.

Montessori adds to these understandings of concrete versus abstract in two 
important ways. First, in the progression from concrete to abstract, there are inter-
mediate steps. Montessori mathematics manipulatives are used to guide children 
gradually from concrete to abstract understanding through a series of small abstrac-
tions. Tactile work is associated with the concrete end of the spectrum while purely 
mental work is on the abstract end. Second, we can teach and learn a single math-
ematical concept or process along this progression, scaffolding student understand-
ing. The mathematics itself is not necessarily getting more abstract, rather the way 
the student comprehends the mathematics gets progressively more abstract.

In Fig. 13.1 the children are learning to think about place value with a number 
they chose themselves: 7777. At the most concrete level, they represent 7777 with 
the “golden beads” (base ten blocks); each golden bead represents one, a bar of ten 
beads represents 10, a flat of one hundred beads represents 100, a cube of one thou-
sand beads represents 1000. In this representation 7777 is a very tactile concept; 
there are 7777 beads to touch. Children take the next step in the progression to 
abstraction with the “stamp game,” color-coded tiles with values 1, 10, 100 or 1000 
imprinted on them. The stamp game is a more abstract representation of place value 
than the golden beads because color and numeral, rather than size show the distinc-
tion. In another step towards abstraction, the children represent the abstract numeral 
using color-coded cards whose colors align with the stamp game. The cards with 
7000, 700, 70 and 7 are stacked to make 7777. The next material in the progression 
to abstraction is the “small bead frame,” an abacus consisting of four wires each 
with ten color-coded beads, according to hierarchy. This material is at the abstract 
end of the spectrum because the numerals imprinted on the stamps are gone and the 
restriction of ten beads requires the child to do any exchanging between place  values 
immediately. When children work with number operations there are other materials 
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(not shown in Fig. 13.1) that help students make the transition from concrete under-
standing of algorithms to abstract paper-and-pencil computations. In all of these 
representations the child is learning the same concept of place value. The mathe-
matics itself isn’t getting any more abstract. However, the child’s concept of place 
value makes a gradual progression on a spectrum from concrete to abstract.

13.3  GeoGebra as a Tool to Improve Conceptual 
Understanding

GeoGebra, dynamic mathematics open source software, serves as a tool to create 
Montessori-style activities (think: hands-on, self-correcting) that help students gain 
abstract understanding through concrete work. Part of the power of GeoGebra is 
that information may be entered in any one of three ways: symbolically (in the 
Algebra View using the Input Box), visually (using tools in the Graphics View) or 
numerically (in the Spreadsheet View). GeoGebra automatically provides the other 
representations of that same information, cleverly color-coding matching objects in 
the different representations. Another key aspect is that GeoGebra is dynamic. Once 
dependent objects have been constructed the user can change one part and the rest 
of the objects change in a corresponding manner. All of these aspects of GeoGebra 
work together to provide an experience for students that is hands-on and 
self-correcting.

Fig. 13.1 Progression from concrete to abstract
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13.3.1  Classroom Demonstrations

I began using GeoGebra with classroom demonstrations that I hoped would help 
students understand the ideas behind the mathematics we were exploring. The 
GeoGebra software is used to create GeoGebra applets. While there are many such 
applets available online (GeoGebraTube 2011) for this purpose, I found that writing 
my own applets gave me better intuition about the power of GeoGebra to support 
student learning.

One classroom demonstration supports student solutions of an optimization exer-
cise in first-semester calculus. In the exercise students are asked to maximize the area 
of a rectangle that has its base on the x-axis and its other two vertices above the x-axis 
and lying on the parabola y x= −8 2  (Stewart 2008). As with many optimization 
exercises, the greatest challenge for students is creating the objective function and its 
domain. Figure13.2 shows one visual result from a GeoGebra applet designed to help 
students create the objective function, find the domain of the objective function and 
make sense of their final answer. The applet helps students visualize a concrete sam-
ple rectangle. This aids them in understanding the more abstract general rectangle, 
guiding them next to the discovery that an appropriate expression for the width of the 
rectangle is 2x, and then to an appropriate objective function: A x x x( ) = -( )2 8 2 .  
As the instructor experiments with the dynamic point (x, y), using the mouse to drag 
it up and down the parabola, students can discover that an appropriate domain for the 
objective function is approximately 0 2 8£ £x . . The applet also supports the students’ 

Fig. 13.2 Optimization exercise with GeoGebra
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understanding that the upper endpoint of the domain can be found at an x-intercept 
of the function y x= -8 2 ,  guiding them to the precise domain, 0 8≤ ≤x . After 
students have found the critical number of their objective function and tested that 
their critical number truly maximizes the function, they can make sense of their 
answer when the instructor experiments with the dynamic point (x, y), observing that 
the maximum area of the shaded region is approximately 17.4.

This classroom demonstration helps students begin to see how they can create 
their own objective functions and make sense of their final answers. The dynamic 
nature of GeoGebra plays an important role in helping students progress from 
understanding how to think about optimization problems both concretely (a specific 
rectangle) and more abstractly (a general rectangle).

13.3.2  Student Activities with Instructor-Created Applets

As I created more classroom demonstrations (Tomlinson 2014) and used applets 
created by others, I realized that it was important for students themselves to interact 
with the applets. If the research that validates the Montessori principle of movement 
and cognition (Lillard 2005) is applicable to college students, then students need to 
get their own hands on the applets. Hence I began to develop student activities with 
instructor-created applets that students access through a learning management sys-
tem and use to complete exercises both inside and outside of class.

For example, my differential equations students complete exercises outside of 
class using an applet I developed that illustrates the Euler Approximation Method 

for first order initial value problems of the form 
dy

dx
f x y y x y= ( ) ( ) =, , 0 0  (see 

Fig. 13.3). Students complete exercises in which they experiment with different 
initial value problems, different step sizes and different numbers of steps to get 
approximate solutions. Their exploration helps them see the connection between the 
step size and the number of steps. They can also view either an analytic (in the case 
of an algebraic f(x, y)) or a numerical solution, which allows them to make connec-
tions between their approximate solution and a more precise solution.

It is fairly easy for students to simply memorize the formulas for Euler’s Method: 

x x h y y hf x yn n n n nn+ += = + ( )+1 1, ,,  work exercises from a textbook and correctly 

solve similar exercises on a test without having even a small clue of what they are 
doing and what it means. By having students explore Euler’s Method exercises with 

the GeoGebra applet, they begin to make sense of the “ f x yn n,( ) ” in the formulas 

and understand that it represents the slope of a line segment. One of the reasons that 
a unit on Euler’s Method is included in a differential equations course is to empha-
size that, while many symbolic approaches for solving differential equations are 
studied, it is important to be able to think about differential equations and their 
 solutions graphically and numerically as well. Thinking in all three modes gives 
students better intuition about what it means to solve a differential equation. The 
Euler’s Method applet demonstrates these multiple representations very clearly with 
side-by-side views demonstrating symbolic, visual and numerical representations.

13 A Montessori-Inspired Career in Mathematics Curriculum Development…



188

13.3.3  Student-Created Applets Following Detailed 
Instructions

The third way I use GeoGebra to support student learning is by having students cre-
ate their own applets, outside of class, by following podcast instructions. I provide 
podcasts instead of live instructions because students can make their applets much 
more efficiently if they have the ability to pause and re-start my instructions. Once 
they have created their applets, they bring them to class for exploration to learn 
mathematics.

Figure 13.4 shows visual output from a student-made applet designed to con-
struct the limit definition of the derivative. In GeoGebra, students graph a function, 
create a slider, use their slider to draw a dynamic secant line PQ,  and compute the 
slope of their secant line. Several gains result from having students create the applet 
themselves. Creating the applet gives students a more concrete understanding of 
how the coordinates of the points P and Q arise and where the formula for the slope 
of the secant line comes from. It also helps them understand that for a given point P 
there is a progression of secant lines. So creating an applet helps students gain a 
deeper understanding of the mathematics. In addition, creating their own applet and 
assigning colors of their choice gives students a sense of ownership of the 
knowledge.

In class, students use their sliders to explore the connection between slope of 
secant line and slope of tangent line. They begin to develop the limit definition of 
the derivative in a very concrete, visual way. Students explore the results of moving 
the slider that controls the values of h towards values that are close to 0. This is a 
tactile version of the abstraction lim

h→0
. By working with the slider students make 

connections between the slope of a secant line, average rate of change, slope of a 

Fig. 13.3 Euler approximation method with GeoGebra
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tangent line and instantaneous rate of change. They come to understand, at a very 
concrete level, that

 
" " lim" ."slope of tangent line slope of secant line =

®h 0  

The dynamic aspect of GeoGebra next allows students to easily explore the limit 
definition of the derivative for a variety of functions and points on the functions. 
Through this exploration students progress from the more concrete formula

 

" "slope of secant line =
( ) - ( )
( ) - ( )

y Q y P

x Q x P
 

to the more abstract formula

 
" " .slope of secant line =

+( ) - ( )f x h f x

h  

GeoGebra experiences guide students to combine their rich ideas about the slope of 
the secant line with their rich ideas about limits to develop the limit definition of the 
derivative.

13.3.4  Independently-Generated Student Applets

The last type of GeoGebra module I have developed is one for students in more 
advanced classes to generate applets independent of detailed instructions. An 
example of this type of module is the study of images of lines and circles under 

Fig. 13.4 Rate of change with GeoGebra
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complex mappings in a complex variables course. Working with students who are 
adept at parameterizing lines and circles, I demonstrated how to use GeoGebra to 
make a conjecture about the image of a line or a circle under the complex mapping 
f z z( ) = 2  I followed this by showing the students how to prove those conjectures.

Their out-of-class assignment was to explore the images of circles and lines 
under the inversion mapping: f z z( ) =1 /  by producing their own applets. Students 
create an appropriate slider to use as a parameter (see Fig. 13.5) and then use this 
slider to create a complex number, on a circle or a line (in Fig. 13.5, z eit1 2 0 5= + . ). 
Students use the Trace feature in GeoGebra and the slider to create a line or a circle 
in the complex plane. Next they define the image of the point z1. in the GeoGebra 
Input Box, using the function: z z2 11= /  Using the Trace feature for the point z2. 
students make a conjecture about the image of their line or circle. (In Fig. 13.5 this 

image is the circle centered at 
8

15
0+ i  with radius 

2

15
) In the assignment students 

find images of lines and circles under inversion through this progression: (1) a line 
through the origin of their own choice; (2) circle centered at the origin of their own 
choice; (3) a particular line that doesn’t go through the origin; (4) a particular circle 
not centered at the origin. By experimenting with these lines and circles students 
conjecture that the image under inversion of any line or circle is another line or a 
circle. Working with specific concrete lines and circles, students generalize what 
happens to any line or circle under inversion.

13.4  Writing-to-Learn Mathematics

When I was an undergraduate majoring in mathematics, my very kind physics 
instructor attempted to engage me in some casual conversation by asking what we 
were studying in my advanced calculus class. I was flummoxed. The only answer I 

Fig. 13.5 Complex image of circle z − =2
1

2
 under inversion with GeoGebra
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could seem to provide was something along the lines of “Section 2.5 exercises 3, 11 
and 17.” I knew there were some epsilons and deltas involved. I could complete 
those exercises completely to the satisfaction of my advanced calculus instructor. 
Yet, there was no way I could give a reasonable response like, “We are learning how 
to think about continuity in a rigorous, symbolic way. This sharpens the notion of 
‘arbitrarily close’ that we used for limits in calculus class and opens the door to 
proving theorems about continuous functions.” I was woefully inarticulate about 
what I was learning. Furthermore, I didn’t even know what I could have been doing 
that would help me gain this ability to articulate the mathematics.

As a professor, one lesson I could have taken from this conversation is: “Don’t 
try to make pleasant conversation with your students.” Joking aside, for me the real 
lesson is that if I want my students to learn in a robust way that helps them retain 
knowledge, I need to find ways to encourage them to articulate what they are learn-
ing. By developing writing-to-learn mathematics materials, I help students do this. 
I am also motivated because these activities have the potential to help students 
spend more productive time on task. Part of the beauty of writing-to-learn activities 
is that they can simultaneously help weaker students succeed and provide stronger 
students with a challenge (Meier and Rishel 1998; Sterret 1992).

The writing-to-learn activities that I use require students to reflect on the math-
ematics they are learning in ways that facilitate construction of their own under-
standings. Some writing-to-learn assignments encourage students to verbalize their 
ideas in dialogue with one another and capture that dialogue on paper. Other assign-
ments involve prompts for inner dialogue resulting in deeper mathematics compre-
hension. These writing activities help scaffold understanding in the same way that 
Montessori mathematics materials do for children. While the child in a Montessori 
classroom is progressing from tactile work (concrete) to mental work (abstract), the 
college student is progressing from working practice exercises (concrete) to con-
structing mathematical insights (abstract).

Writing-to-learn assignments differ greatly from proof writing that I explicitly 
teach in some courses (linear algebra, discrete mathematics, etc.) and from report 
writing done at the culmination of a semester-long research project in other courses 
(mathematical modeling, senior capstone, etc.) Descriptions of two types of writing- 
to- learn exercises I developed follow.

13.4.1  Cooperative Guided Reflection

The first involves projects that I call “cooperative guided reflection” (CGR). In these 
projects, students work in teams solving textbook exercises and then use a list of 
prompting questions to guide them in a reflection process. Because CGR is time- 
consuming, typically students will complete only two CGR projects in a semester. 
Thus, I choose topics for CGR carefully. A CGR topic should be challenging for 
students, help students synthesize several ideas, and involve either problem solving 
or strategizing. Here I will describe how CGR has worked for teaching integration 
strategies in a second-semester calculus course.
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After introducing students to a variety of integration techniques (integration by 
parts, substitution, etc.) we have a classroom discussion about strategies for decid-
ing which techniques to use. Previously, I would assign about 20 exercises for stu-
dents to practice with and be done with the topic. To employ CGR, I still assign 20 
exercises, but I ask them to complete additional activities in assigned groups of two 
to four students.

The CGR activities begin with teams of students selecting eight of their 20 inte-
gral exercises and creating two integral exercises of their own according to definite 
guidelines. For example, they must make sure that, broadly speaking, their ten inte-
grals show all of the integration techniques we have studied. They must make sure 
that they have an integral whose solution requires more than one technique. I pro-
vide significant support as students create their own integrals. I give them sugges-
tions that include thinking about the inverse relationship between differentiation 
and integration, deciding on their technique before they create the integral, and 
making a variation on an integral from their textbook. They are also expected to 
check their answers to the integrals they create using technology such as GeoGebra 
or WolframAlpha®.

The next part of the CGR activities is to reflect on and analyze their ten integrals. 
They complete a grid in which I list the techniques and they supply a corresponding 
integral with some verbal explanation to help classify their work. In the last part of 
the guided reflection, they respond to three prompts asking them to reflect on one 
integral, one technique and one strategy. The prompts include questions about what 
they find interesting, how making mistakes helps them learn, and how their decision 
process works. The writing may be considered informal as students are exploring 
the way they think about the mathematics in addition to analyzing the mathematics 
itself. Teamwork promotes student dialog that informs the written reflections.

From the point of view of Bloom’s Taxonomy and Webb’s Depth of Knowledge 
(DOK), CGR activities provide higher cognitive demand to students than simply 
working integration exercises (Hess et al. 2009; Webb 2006). With enough practice, 
a single integration technique requires low cognitive demand, not much more than 
recalling and organizing (DOK levels one and two, respectively). Strategizing about 
which technique to use and using multiple techniques to complete an integral 
requires higher cognition, as students learn to make decisions and revisions in their 
integration techniques (DOK level three). CGR activities engage students in the 
highest cognitive demand, because they extend their thinking, by creating their own 
integrals and analyzing their integral exercises (DOK level four).

13.4.2  Journaling

The other type of writing-to-learn exercise I have implemented is journaling in the 
introductory differential equations class. Although the value of mathematics journ-
aling has been written about extensively (Meier and Rishel 1998; Sterret 1992), in 
my experience it is not a common practice at the college level. Undoubtedly, this is 
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because it can be time-consuming for students and instructors alike. So rather than 
explain journaling in detail, I will describe how I made this activity manageable 
both for myself and my students.

In my class, students submit ten journal entries with homework sets. I provide 
overall guidelines along with some general writing ideas for them. General writing 
ideas include open-ended instructions to summarize a section of the textbook and to 
connect differential equations with other disciplines. In the guidelines, I describe 
the purpose of their journaling: to learn by exploring, organizing and synthesizing 
mathematical ideas. In addition to such general writing ideas, with each homework 
set I provide two or three content-specific prompts from which students can choose 
(Farlow 1994). Although some instructors have used mathematics journals to 
explore the affective realm, I emphasize that their journal is not a place to discuss 
course mechanics or exam results, that students are expected to confer with me 
about such concerns.

Scoring for the journals is based on complete, thoughtful entries. Mostly stu-
dents get full credit, saving instructor time. I take time to provide positive feedback 
that emphasizes students’ best ideas. I also provide corrections for misconceptions 
or mistakes. When it is clear that students have put thought into their entries, I do 
not deduct points for such errors.

Both CGR and journaling reveal student thinking and confusion that can become 
prompts for classroom discourse. The first time I used CGR with the Integration 
Strategy topic, I had no idea that students conflated integration technique with inte-
gration strategy. Groups of students wrote that technique and strategy were two 
words for the same thing. Our subsequent in-class conversation helped them begin 
to distinguish between when they were using a technique and when they were mak-
ing a decision about what technique to use next. I often share some of the best stu-
dent writing with the entire class by displaying it on a document camera. This 
provides students with models for how to reflect on mathematics and how to articu-
late their thoughts. One of the most illuminating student journal entries stated, “I 
can do all of the assigned exercises, but I don’t really understand it well enough to 
journal about it yet.” In the absence of the journaling activity, students may equate 
working routine homework exercises with truly understanding mathematics. This 
student realized that he needed to do some more thinking, reflecting, or talking to 
make complete sense of what we were learning.

13.5  Flipped or Blended Learning

13.5.1  Principles and Goals of Blended Learning

Some of my most recent curriculum work involves implementing flipped or blended 
learning, as a way to improve interactive engagement during class time. Interactive 
engagement teaching methods involve activities that yield immediate feedback 
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through discussion with peers or instructors (Epstein 2013). Primarily, the term 
flipped refers to a flip between learning from lectures in class and then practicing at 
home to learning from lectures at home and practicing in class with instructor sup-
port. In my classes, this means using technology (video lessons) so that students see 
ideas at home and then work on exercises in groups in class. A second interpretation 
of the term flipped is that it is a flip between the classroom activities being centered 
on the teacher to being centered on the student activity. The term blended means 
that there is a mix between a flipped classroom and the more traditional approach. 
For me, blended learning always involves some practice exercises at home.

There are many pointers guiding us in the direction of interactive engagement 
teaching methods, from Montessori’s focus on student-centered learning to work by 
science colleagues to incorporate more active learning in their classrooms (Freeman 
et al. 2014). Research on the Calculus Concept Inventory (CCI) is especially com-
pelling. The CCI is a way to measure students’ conceptual (but not necessarily 
procedural) understanding of calculus. Researchers found that students in US col-
leges did very poorly on CCI and that none of the following had an effect on CCI 
score: class size, instructor experience, time spent in class, student preparation at 
entrance. However, interactive engagement teaching methods did improve student 
performance on CCI (Epstein 2013). A national study of calculus instruction also 
points toward the efficacy of active learning (Bressoud et al. 2015).

Thinking about using flipped learning to help students who were not succeeding 
in my classes led me to Bergman and Sams’ (2012) delineation of three types of 
students who do poorly in school. There are students whose time is over-extended; 
many of my students work more than 20 h per week, while taking a full load of chal-
lenging coursework. There are students who have an insufficient background. (This 
is my personal favorite excuse for students doing poorly in my classes, since it takes 
the onus off of me.) Helping students who need to fill in missing gaps is a significant 
part of my teaching. The third kind of student Bergman and Sams identified as 
“playing school.” These students come to class, but don't want to learn, aren’t trying 
to learn, and are instead really just trying to figure out how to get a certain grade, by 
doing the least amount of work possible. It never occurs to them that learning is in 
their own best interest. Bergmann and Sams argued that they are able to reach all 
three types of students through flipped learning. As I design materials to implement 
flipped learning, I keep these three kinds of students in mind along with the students 
who have great success in more traditional college learning environments.

When I began to implement flipped learning I had already been creating online 
video content (accessible through a learning management system), in the form of 
annotated notes, to support my students as they worked on homework exercises. 
Students appreciated hearing my voice helping them work an assigned exercise, 
emphasizing the ways I wanted them to think about various aspects of the work. My 
strongest students used them occasionally; I could see real gains for students who 
were underprepared. But students who were very busy or who were “playing school” 
were not benefiting.
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13.5.2  Blended Learning in Calculus I

With flipped or blended learning, some of the lessons are provided to students 
before class. This frees up class time to support students as they interact with the 
material, helping diverse learners. This is how the flip worked for me in a first- 
semester calculus unit on areas. Students were assigned four 5-min podcasts to 
watch before class. In the video lessons, I explained the general ideas and demon-
strated two examples. Students were expected to take notes and be prepared to show 
them to me at the beginning of class.

When students came to class I distributed a packet of exercises consisting of the 
same examples I had worked on the chalkboard when teaching this unit in a more 
traditional format. Students worked on the packet with each other using their notes 
from the podcasts. Students who had not watched the podcasts (or not taken notes) 
moved next to a classmate with notes. This arrangement worked well because most 
students had notes (knowing that there were points associated with them) but those 
who didn’t still had a way to be fully engaged. I began to circulate around the room, 
checking podcast notes and talking to students. Every few minutes I took a break to 
write down some solutions, projected onto the document camera. This gave students 
a way to check their work and also kept them on task. A few times, I paused the 
class work briefly to direct a whole group discussion, addressing an idea that had 
arisen. As I circulated through the room, I answered individual questions about both 
the video lessons and the packet of exercises, many of which I would have been 
unlikely to hear in my more traditional format. I had a personal interaction with 
each one of my 32 students that day.

There was one student in my class who I knew led a very busy life and who had 
also missed some class days because of illness. When I checked in with her during 
class that day, she said, “I’m doing fine with areas, but I am still having problems 
with integration by substitution,” the topic we had been working with the previous 
week. Normally, I might have asked her to come to my office hours (which was 
unlikely to actually happen because of her schedule). In the flipped format, I could 
see that everyone was on task with areas, so I had time to address her questions 
immediately.

For me, flipped or blended learning is a way to lower the number of students 
who do poorly in my classes, while maintaining high learning expectations. It is a 
way to help all students become engaged with and committed to mathematics. 
There is one major drawback: the amount of instructor time required to prepare 
video lessons and in-class activities. I did not use materials that others have posted 
on the internet, because I believe I can create a video lesson in less time than I can 
find a suitable version online and because of recommendations about students’ 
need to connect with their instructor (Moore et al. 2014). With flipped or blended 
learning, I have more meaningful interaction with my students, the most pleasur-
able part of teaching.
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13.6  Career Trajectory

My career has been fueled by passions for mathematics and for social justice. I started 
as a researcher in partial differential equations, investigating questions about the heat 
equation with space variables that are complex. While I have had a lifelong interest 
in political, social and economic equality for all, I didn’t originally see this as part of 
my career. However, when my campus was looking for someone to lead our Women’s 
Studies Program, I saw a way to realize my passion for social justice and I took the 
opportunity to take my career on a brief excursion. As Director of Women’s Studies, 
I taught women’s studies courses and coordinated women’s studies programming 
with faculty from a wide array of disciplines. This work led me to the epiphany that 
mathematics education is a social justice issue. By creating high- quality mathematics 
classrooms that spark curiosity and foster long-term interest in mathematics, we are 
helping to create equal access to our economy (Halpern et al. 2007).

The next detour in my career path was motivated by the birth of my children, 
leading me to a study of Maria Montessori’s idea that the most effective education 
is supported by materials and activities that are hands-on, self-directed, self- 
correcting and self-chosen. I became an advocate for Montessori education, pre-
senting to community groups and serving on school committees. Through 
grant-funded work with the College of Education on my campus and volunteering 
in local schools, I work to bring Montessori mathematics into mainstream class-
rooms. Eventually, I began using Montessori’s ideas in my own college mathemat-
ics classrooms.

The opportunity to do mathematics education research presented itself when I 
participated in a regional scholarship of teaching and learning (SoTL) in mathemat-
ics workshop. I completed a project addressing the question of how a cooperative 
guided reflection (CGR) activity in first-semester calculus improved problem- 
solving skills by doing a literature review, a quasi-experiment, student surveys 
about problem-solving, and an analysis of student work. I found that there was a 
positive impact, qualitatively, on students’ mathematical belief systems, as well as 
quantitatively, on students’ ability to solve optimization problems (Tomlinson 
2008). This gave me impetus to continue experimenting with CGR.

Another important aspect of my career has been coaching 19 successful mathe-
matical modeling teams. It is a joy to help these students develop skills in mathe-
matics, internet research, teamwork, mathematical technology, and technical 
writing. Working closely with these students informs my thinking about how to 
create instructional materials for students at their level.

When GeoGebra, became available, it was a perfect fit, providing another way to 
implement Montessori principles. The fact that GeoGebra is open source was espe-
cially attractive to me because it means that everyone has access. As we are learning 
more about the importance of interactive engagement classrooms and flipped learn-
ing, I am creating curriculum materials to implement these pedagogies as well.
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Regular exchange of ideas with colleagues has been key to my success and my 
continued energy for creating instructional materials. This takes many forms: infor-
mal comparison of topic treatment with colleagues in my department who teach the 
same courses I am teaching, formal discussions with faculty in science departments 
about how mathematics courses support their work, participation in grant-funded 
work with colleagues in Teacher Education, and discussions with colleagues outside 
of my campus at conferences.

My work has been well received on my campus. Any work that improves student 
engagement usually results in improved retention and recruitment—priorities at 
most colleges and universities. I have given faculty development presentations on 
GeoGebra for adjunct and regular faculty, and served as the contact person for peo-
ple with technology and pedagogy questions about this software. This has been 
appreciated by faculty and administrators alike. I have accepted invitations to lead 
GeoGebra workshops for faculty at a local high school and a regional two-year col-
lege. Survey responses of students on my work with flipped pedagogy are very 
positive.

My career has gradually shifted from esoteric, but definitive, questions about 
partial differential equations to broad-reaching, but nebulous questions about better 
ways to teach mathematics. It is a comfort to start with a mathematical premise, 
logically arrive at a conclusion and know that this work is entirely repeatable. On 
the other hand, it is exciting to create materials that help at least some students 
become committed and engaged in mathematics, even if we cannot always be cer-
tain that the same materials will work for a different instructor or a different set of 
students.

In the next phase of my career, I am learning how to provide leadership to an 
academic department of nine tenure-track faculty and 11 other instructional staff 
members as I begin to serve as chair. While I continue my work developing instruc-
tional materials, I am taking on a greater role promoting high-impact mathematics 
education practices in my department. I believe that this focus will, over time, 
strengthen my department by making our graduates more employable and attracting 
more students to our programs. I have started this emphasis by using our curriculum 
review process as a way to share research results from mathematics education 
among my faculty. I am learning that through internal grants and personnel pro-
cesses, I have new opportunities to encourage my faculty to pursue work that 
improves mathematics education in all of our classrooms.
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